Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 41(11): 2457-2474, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33478988

ABSTRACT

Transient receptor potential melastatin 3 (TRPM3) is a heat-activated ion channel in primary sensory neurons of the dorsal root ganglia (DRGs). Pharmacological and genetic studies implicated TRPM3 in various pain modalities, but TRPM3 inhibitors were not validated in TRPM3-/- mice. Here we tested two inhibitors of TRPM3 in male and female wild-type and TRPM3-/- mice in nerve injury-induced neuropathic pain. We found that intraperitoneal injection of either isosakuranetin or primidone reduced heat hypersensitivity induced by chronic constriction injury (CCI) of the sciatic nerve in wild-type, but not in TRPM3-/- mice. Primidone was also effective when injected locally in the hindpaw or intrathecally. Consistently, intrathecal injection of the TRPM3 agonist CIM0216 reduced paw withdrawal latency to radiant heat in wild-type, but not in TRPM3-/- mice. Intraperitoneal injection of 2 mg/kg, but not 0.5 mg/kg isosakuranetin, inhibited cold and mechanical hypersensitivity in CCI, both in wild-type and TRPM3-/- mice, indicating a dose-dependent off-target effect. Primidone had no effect on cold sensitivity, and only a marginal effect on mechanical hypersensitivity. Genetic deletion or inhibitors of TRPM3 reduced the increase in the levels of the early genes c-Fos and pERK in the spinal cord and DRGs in CCI mice, suggesting spontaneous activity of the channel. Intraperitoneal isosakuranetin also inhibited spontaneous pain related behavior in CCI in the conditioned place preference assay, and this effect was eliminated in TRPM3-/- mice. Overall, our data indicate a role of TRPM3 in heat hypersensitivity and in spontaneous pain after nerve injury.SIGNIFICANCE STATEMENT Neuropathic pain is a major unsolved medical problem. The heat-activated TRPM3 ion channel is a potential target for novel pain medications, but the pain modalities in which it plays a role are not clear. Here we used a combination of genetic and pharmacological tools to assess the role of this channel in spontaneous pain, heat, cold, and mechanical hypersensitivity in a nerve injury model of neuropathic pain in mice. Our findings indicate a role for TRPM3 in heat hyperalgesia, and spontaneous pain, but not in cold and mechanical hypersensitivity. We also find that not only TRPM3 located in the peripheral nerve termini, but also TRPM3 in the spinal cord or proximal segments of DRG neurons are important for heat hypersensitivity.


Subject(s)
Hyperalgesia/metabolism , Neuralgia/metabolism , TRPM Cation Channels/metabolism , Animals , Female , Hot Temperature , Hyperalgesia/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/etiology , Peripheral Nerve Injuries/complications
2.
Biochem Pharmacol ; 183: 114310, 2021 01.
Article in English | MEDLINE | ID: mdl-33130130

ABSTRACT

During the molecular transduction of itch, the stimulation of pruriceptors on sensory fibers leads to the activation or sensitization of ion channels, which results in a consequent depolarization of the neurons. These ion channels mostly belong to the transient receptor potential (TRP) channels, which are involved in nociception and thermosensation. In particular, TRPV1 and TRPA1 were described in the transduction of both thermal nociception as well as histaminergic and non-histaminergic itch. The thermosensitive TRPM3 plays an indispensable role in heat nociception together with TRPV1 and TRPA1. However, the role of TRPM3 in the development of pruritus has not been studied yet. Therefore, in this study we aimed at investigating the potential role of TRPM3 in the transduction of pruritus and pain by investigating itch- and nociception-related behavior of Trpm3+/+ and Trpm3-/- mice, and by studying the activation of somatosensory neurons isolated from trigeminal ganglia upon application of algogenic and pruritogenic substances. Activators of TRPM3 evoked only nocifensive responses, but not itch in Trpm3+/+ animals, and these nocifensive responses were abolished in the Trpm3-/- strain. Histamine and endogenous non-histaminergic pruritogens induced itch in both Trpm3+/+ and Trpm3-/- mice to a similar extent. Genetic deletion or pharmacological blockade diminished TRPM3 mediated Ca2+ responses of sensory neurons, but did not affect responses evoked by pruritogenic substances. Our results demonstrate that, in contrast to other thermosensitive TRP channels, TRPM3 selectively mediates nociception, but not itch sensation, and suggest that TRPM3 is a promising candidate to selectively target pain sensation.


Subject(s)
Nociception/physiology , Pruritus/chemically induced , Pruritus/metabolism , TRPM Cation Channels/deficiency , Animals , Capsaicin/toxicity , Endothelin-1/toxicity , Histamine/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , TRPM Cation Channels/antagonists & inhibitors
3.
Molecules ; 17(12): 13704-11, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23174890

ABSTRACT

Considerable efforts have been devoted to control and maintain the sustained release of proteins. In this experiment, we used bovine serum albumin-fluorescein isothiocyanate (BSA-FITC) as a model protein to explore the potential utility of a chitosan and glycerol phosphate disodium salt (GP) hydrogel as a protein drug depot. The mixing of chitosan and GP solutions (0, 10, 20 and 30 wt%) formed a liquid at room temperature. At 37 °C, however, the chitosan/GP solutions formed hydrogels through an electrostatic crosslinking process. This electrostatic interaction between the chitosan, cationic amine group, and GP, anionic phosphate group, was confirmed by the changes of zeta potentials and particle sizes of this solution. The electrostatic interaction depended both on the GP ratios in chitosan and the incubation time of chitosan/GP solutions. Furthermore, BSA-FITC-loaded chitosan/GP hydrogels were examined for their ability as potential depots for the BSA drugs. Hence, when observed, the BSA-FITC-loaded chitosan/GP hydrogels showed an in vitro sustained release profile of BSA up to 14 days. Collectively, our results show that the chitosan/GP hydrogels described here, can serve as depots for BSA drugs.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Fluorescein-5-isothiocyanate/analogs & derivatives , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Serum Albumin, Bovine/chemistry , Chitosan/metabolism , Fluorescein-5-isothiocyanate/chemistry , Humans , Proteins/chemistry , Proteins/metabolism , Solutions , Static Electricity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...