Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 37: 172-190, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38549771

ABSTRACT

Biliary strictures are characterized by the narrowing of the bile duct lumen, usually caused by surgical biliary injury, cancer, inflammation, and scarring from gallstones. Endoscopic stent placement is a well-established method for the management of biliary strictures. However, maintaining optimal mechanical properties of stents and designing surfaces that can prevent stent-induced tissue hyperplasia and biofilm formation are challenges in the fabrication of biodegradable biliary stents (BBSs) for customized treatment. This study proposes a novel approach to fabricating functionalized polymer BBSs with nanoengineered surfaces using 3D printing. The 3D printed stents, fabricated from bioactive silica poly(ε-carprolactone) (PCL) via a sol-gel method, exhibited tunable mechanical properties suitable for supporting the bile duct while ensuring biocompatibility. Furthermore, a nanoengineered surface layer was successfully created on a sirolimus (SRL)-coated functionalized PCL (fPCL) stent using Zn ion sputtering-based plasma immersion ion implantation (S-PIII) treatment to enhance the performance of the stent. The nanoengineered surface of the SRL-coated fPCL stent effectively reduced bacterial responses and remarkably inhibited fibroblast proliferation and initial burst release of SRL in vitro systems. The physicochemical properties and biological behaviors, including in vitro biocompatibility and in vivo therapeutic efficacy in the rabbit bile duct, of the Zn-SRL@fPCL stent demonstrated its potential as a versatile platform for clinical applications in bile duct tissue engineering.

2.
3D Print Addit Manuf ; 8(5): 293-301, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-36654934

ABSTRACT

Biomass materials, an important source of chemical feedstocks, could replace fossil fuels as a resource in the future. The chemical feedstocks from biomass materials are used in many medical and pharmaceutical products and in fuels, chemicals, and functional materials. Biomass materials are expected to be used in biomedical engineering fields, especially due to their low biotoxicity. By the way, most of the demand for bio-application fields is an application targeted for customized production, so a high formability is required for production. Research on three-dimensional (3D) printing technology capable of satisfying these requirements has been ongoing. Manufacturing additives need to be investigated to use biomass materials as a resin or bioink safely for 3D printing, which is a technique widely used in biomedical engineering fields. In this study, a projection microstereolithography (PµSL) system, a 3D printing technique, was made that uses a biomass-based resin. Biomass materials are designed to be photocurable for use in the PµSL process. Various PµSL process parameters were investigated using the biomass-based resin to determine the optimum fabrication conditions for 3D structures. This study demonstrated that a biomass-based resin can be used in the PµSL process. We provide a method for its application in various biomedical engineering fields.

3.
IEEE Trans Appl Supercond ; 21(3): 1632-1635, 2011 Jun.
Article in English | MEDLINE | ID: mdl-22081753

ABSTRACT

The spatial field homogeneity and time stability of a trapped field generated by a stack of YBCO square plates with a center hole (square "annuli") was investigated. By optimizing stacking of magnetized square annuli, we aim to construct a compact NMR magnet. The stacked magnet consists of 750 thin YBCO plates, each 40-mm square and 80- µm thick with a 25-mm bore, and has a Ø10 mm room-temperature access for NMR measurement. To improve spatial field homogeneity of the 750-plate stack (YP750) a three-step optimization was performed: 1) statistical selection of best plates from supply plates; 2) field homogeneity measurement of multi-plate modules; and 3) optimal assembly of the modules to maximize field homogeneity. In this paper, we present analytical and experimental results of field homogeneity and temporal stability at 77 K, performed on YP750 and those of a hybrid stack, YPB750, in which two YBCO bulk annuli, each Ø46 mm and 16-mm thick with a 25-mm bore, are added to YP750, one at the top and the other at the bottom.

4.
IEEE Trans Appl Supercond ; 20(3): 1037-1040, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20585463

ABSTRACT

This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...