Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892402

ABSTRACT

In day-to-day living, individuals are exposed to various environmentally hazardous substances that have been associated with diverse diseases. Exposure to air pollutants can occur during breathing, posing a considerable risk to those with environmental health vulnerabilities. Among vulnerable individuals, maternal exposure can negatively impact the mother and child in utero. The developing fetus is particularly vulnerable to environmentally hazardous substances, with potentially greater implications. Among air pollutants, toluene is neurotoxic, and its effects have been widely explored. However, the impact of low-level toluene exposure in daily life remains unclear. Herein, we evaluated 194 mothers and infants from the Growing children's health and Evaluation of Environment (GREEN) cohort to determine the possible effects of early-life toluene exposure on the nervous system. Using Omics experiments, the effects of toluene were confirmed based on epigenetic changes and altered mRNA expression. Various epigenetic changes were identified, with upregulated expression potentially contributing to diseases such as glioblastoma and Alzheimer's, and downregulated expression being associated with structural neuronal abnormalities. These findings were detected in both maternal and infant groups, suggesting that maternal exposure to environmental hazardous substances can negatively impact the fetus. Our findings will facilitate the establishment of environmental health policies, including the management of environmentally hazardous substances for vulnerable groups.


Subject(s)
Maternal Exposure , Toluene , Humans , Toluene/toxicity , Female , Infant , Maternal Exposure/adverse effects , Pregnancy , Adult , Nervous System/drug effects , Nervous System/embryology , Nervous System/metabolism , Nervous System/growth & development , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Epigenesis, Genetic/drug effects , Male , Mothers , Air Pollutants/toxicity , Infant, Newborn
2.
Front Microbiol ; 15: 1398262, 2024.
Article in English | MEDLINE | ID: mdl-38812694

ABSTRACT

Introduction: The predominant hybrid pathogenic E. coli, enterohemorrhagic E. coli (EHEC), combines characteristics of Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC), contributing to global outbreaks with severe symptoms including fatal consequences. Since EHEC infection was designated as a notifiable disease in 2000 in South Korea, around 2000 cases have been reported, averaging approximately 90 cases annually. Aim: In this work, genome-based characteristic analysis and cell-based assay of hybrid STEC/aEPEC strains isolated from livestock feces, animal source foods, and water in South Korea was performed. Methods: To identify the virulence and antimicrobial resistance genes, determining the phylogenetic position of hybrid STEC/aEPEC strains isolated in South Korea, a combination of real-time PCR and whole-genome sequencing (WGS) was used. Additionally, to assess the virulence of the hybrid strains and compare them with genomic characterization, we performed a cell cytotoxicity and invasion assays. Results: The hybrid STEC/aEPEC strains harbored stx and eae genes, encoding Shiga toxins and E. coli attachment/effacement related protein of STEC and EPEC, respectively. Furthermore, all hybrid strains harbored plasmid-carried enterohemolysin(ehxCABD), a key virulence factor in prevalent pathogenic E. coli infections, such as diarrheal disease and hemolytic-uremic syndrome (HUS). Genome-wide phylogenetic analysis revealed a close association between all hybrid strains and specific EPEC strains, suggesting the potential acquisition of Stx phages during STEC/aEPEC hybrid formation. Some hybrid strains showed cytotoxic activity against HeLa cells and invasive properties against epithelial cells. Notably, all STEC/aEPEC hybrids with sequence type (ST) 1,034 (n = 11) exhibited higher invasiveness than those with E2348/69. This highlights the importance of investigating potential correlations between STs and virulence characteristics of E. coli hybrid strains. Conclusion: Through genome-based characterization, we confirmed that the hybrid STEC/aEPEC strains are likely EPEC strains that have acquired STEC virulence genes via phage. Furthermore, our results emphasize the potential increased danger to humans posed by hybrid STEC/aEPEC strains isolated in South Korea, containing both stx and eaeA, compared to STEC or EPEC alone.

3.
Front Microbiol ; 15: 1374568, 2024.
Article in English | MEDLINE | ID: mdl-38618485

ABSTRACT

CrAssphages are human gut bacteriophages with potential use as an indicator of human fecal contamination in water and other environmental systems. We determined the prevalence and abundance of crAssphages in water, food, and fecal samples and compared these estimates with the prevalence of norovirus. Samples were tested using two crAssphage-specific qPCR assays (CPQ056 and TN201-203) and for norovirus using TaqMan realtime RT-PCR. CrAssphage was detected in 40% of human fecal specimens, 61% of irrigation water samples, 58.5% of stream water samples, and 68.5% of fresh leafy greens samples. Interestingly, across all sample categories, crAssphage concentrations were 2-3 log10 higher than norovirus concentrations. The correlation of detection of crAssphage and norovirus was significant for the irrigation water samples (r = 0.74, p = 7.4e-06). Sequences obtained from crAssphage positive samples from human fecal and stream water samples phylogenetically clustered with genotype I crAssphages, whereas sequences derived from irrigation water samples clustered differently from other genotypes. Our data show that crAssphages were prevalent in norovirus-positive water samples and in fresh leafy green samples, there was a strong correlation between the presence of crAssphage and norovirus. CrAssphage genomic copies were consistently higher than norovirus copies in all sample types. Overall, our findings suggest that crAssphages could be used as reliable indicators to monitor fecal-borne virus contamination within the food safety chain.

4.
Adv Mater ; 36(26): e2312747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531112

ABSTRACT

Herein, a high-quality gate stack (native HfO2 formed on 2D HfSe2) fabricated via plasma oxidation is reported, realizing an atomically sharp interface with a suppressed interface trap density (Dit ≈ 5 × 1010 cm-2 eV-1). The chemically converted HfO2 exhibits dielectric constant, κ ≈ 23, resulting in low gate leakage current (≈10-3 A cm-2) at equivalent oxide thickness ≈0.5 nm. Density functional calculations indicate that the atomistic mechanism for achieving a high-quality interface is the possibility of O atoms replacing the Se atoms of the interfacial HfSe2 layer without a substitution energy barrier, allowing layer-by-layer oxidation to proceed. The field-effect-transistor-fabricated HfO2/HfSe2 gate stack demonstrates an almost ideal subthreshold slope (SS) of ≈61 mV dec-1 (over four orders of IDS) at room temperature (300 K), along with a high Ion/Ioff ratio of ≈108 and a small hysteresis of ≈10 mV. Furthermore, by utilizing a device architecture with separately controlled HfO2/HfSe2 gate stack and channel structures, an impact ionization field-effect transistor is fabricated that exhibits n-type steep-switching characteristics with a SS value of 3.43 mV dec-1 at room temperature, overcoming the Boltzmann limit. These results provide a significant step toward the realization of post-Si semiconducting devices for future energy-efficient data-centric computing electronics.

5.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338858

ABSTRACT

Bisphenol is a chemical substance widely used in plastic products and food containers. In this study, we observed a relationship between DNA methylation and atopic dermatitis (AD) in the peripheral blood mononuclear cells (PBMCs) of pregnant women exposed to bisphenol A (BPA) and its alternatives, bisphenol S (BPS) and bisphenol F (BPF). DNA methylation is an epigenetic mechanism that regulates gene expression, which can be altered by environmental factors, and affects the onset and progression of diseases. We found that genes belonging to the JAK-STAT and PI3K-AKT signaling pathways were hypomethylated in the blood of pregnant women exposed to bisphenols. These genes play important roles in skin barrier function and immune responses, and may influence AD. Therefore, we suggest that not only BPA, but also BPS and BPF, which are used as alternatives, can have a negative impact on AD through epigenetic mechanisms.


Subject(s)
Dermatitis, Atopic , Phenols , Pregnant Women , Humans , Female , Pregnancy , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/genetics , Phosphatidylinositol 3-Kinases , Leukocytes, Mononuclear , DNA Methylation , Benzhydryl Compounds/toxicity , Epigenesis, Genetic
6.
In Vitro Cell Dev Biol Anim ; 60(2): 195-208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228999

ABSTRACT

Eunkyo-san is widely used in the treatment of severe respiratory infections. Mast cells not only serve as host cells for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but also they also exacerbate Coronavirus disease in 2019 (COVID-19) by causing a cytokine storm. Here we investigated whether Eunkyo-san and its active compound naringenin regulate the expression of inflammatory cytokines and factors connected to viral infection in activated human mast cell line, HMC-1 cells. Eunkyo-san and naringenin significantly reduced levels of inflammatory cytokines including interleukin (IL)-1ß, IL-6, IL-8, thymic stromal lymphopoietin, and tumor necrosis factor-α without impacting cytotoxicity. Eunkyo-san and naringenin reduced levels of factors connected to SARS-CoV-2 infection such as angiotensin-converting enzyme 2 (ACE2, SARS-CoV-2 receptor), transmembrane protease/serine subfamily member 2, and tryptase in activated HMC-1 cells. Treatment with Eunkyo-san and naringenin considerably reduced expression levels of ACE2 transcription factor, AP-1 (C-JUN and C-FOS) by blocking phosphatidylinositide-3-kinase and c-Jun NH2-terminal kinases signaling pathways. In addition, Eunkyo-san and naringenin effectively suppressed activation of signal transducer and activator of transcription 3, nuclear translocation of nuclear factor-κB, and activation of caspase-1 in activated HMC-1 cells. Furthermore, Eunkyo-san and naringenin reduced expression of ACE2 mRNA in two activated mast cell lines, RBL-2H3 and IC-2 cells. The overall study findings showed that Eunkyo-san diminished the expression levels of inflammatory cytokines and ACE2, and these findings imply that Eunkyo-san is able to effectively mitigating the cytokine storm brought on by SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cytokines , Humans , Animals , Cytokines/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/pharmacology , Cytokine Release Syndrome/metabolism , Mast Cells , SARS-CoV-2
7.
Heliyon ; 9(12): e23028, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149210

ABSTRACT

Enteroviruses (EVs), which belong to the Picornaviridae family, infect individuals asymptomatically or cause mild symptoms (fever, runny nose, cough, skin rash, sneezing, mouth blister). Severe cases can cause various diseases, such as acute hemorrhagic conjunctivitis, aseptic meningitis, or myocarditis, especially in infants. These viruses can be transmitted via the fecal-oral route via contaminated water. In this study, we established a polymerase chain reaction (PCR) method for detecting EVs in water sample using Coxsackievirus B5 (CV-B5) and Echovirus 30 (E-30), which belong to species B of the four species of EVs (EV-A to D). Several methods have been investigated and compared for the detection of EVs, including real-time reverse transcription (RT) polymerase chain reaction and conventional RT-PCR. The most sensitive primer sets were selected, and the PCR conditions were modified to increase sensitivity. We also quantified the detection limits of real-time and conventional RT-PCR. The detection limits of conventional RT-PCR were detected in 105-106 copy/mL for CV-B5 and 106-107 copy/mL for E-30, respectively. This optimized method for detecting EVs is expected to contribute substantially to the investigation of EV outbreaks in water samples.

8.
Cancers (Basel) ; 16(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38201516

ABSTRACT

The primary objective of this study was to investigate the association of certain genetic alterations and intraoperative fluorescent activity of 5-aminolevulinic acid (ALA) in brain metastasis (BM) of lung adenocarcinoma. A retrospective cohort study was conducted among 72 patients who underwent surgical resection of BM of lung adenocarcinoma at our institute for five years. Cancer cell infiltration was estimated by the intraoperative fluorescent activity of 5-ALA, and genetic alterations were analyzed by next-generation sequencing (NGS). The sensitivity and specificity for detecting cancer cell infiltration using 5-ALA were 87.5% and 96.4%, respectively. Genes associated with cell cycle regulation (p = 0.003) and cell proliferation (p = 0.044) were significantly associated with positive fluorescence activity of 5-ALA in the adjacent brain tissue. Genetic alterations in cell cycle regulation and cell proliferation were also associated with shorter recurrence-free survival (p = 0.013 and p = 0.042, respectively) and overall survival (p = 0.026 and p = 0.042, respectively) in the multivariate analysis. The results suggest that genetic alterations in cell cycle regulation and cell proliferation are associated with positive fluorescence activity of 5-ALA in the adjacent infiltrative brain tissue and influence the clinical outcome of BM of lung adenocarcinoma.

SELECTION OF CITATIONS
SEARCH DETAIL