Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cogn Res Princ Implic ; 4(1): 14, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31001708

ABSTRACT

To successfully interact with software agents, people must call upon basic concepts about goals and intentionality and strategically deploy these concepts in a range of circumstances where specific entailments may or may not apply. We hypothesize that people who can effectively deploy agency concepts in new situations will be more effective in interactions with software agents. Further, we posit that interacting with a software agent can itself refine a person's deployment of agency concepts. We investigated this reciprocal relationship in one particularly important context: the classroom. In three experiments we examined connections between middle school students' concepts about agency and their success learning from a teachable-agent-based computer system called "Betty's Brain". We found that the students who made more intentional behavioral predictions about humans learned more effectively from the system. We also found that students who used the Betty's Brain system distinguished human behavior from machine behavior more strongly than students who did not. We conclude that the ability to effectively deploy agency concepts both supports, and is refined by, interactions with software agents.

2.
Article in English | MEDLINE | ID: mdl-30613246

ABSTRACT

Computational thinking (CT) parallels the core practices of science, technology, engineering, and mathematics (STEM) education and is believed to effectively support students' learning of science and math concepts. However, despite the synergies between CT and STEM education, integrating the two to support synergistic learning remains an important challenge. Relatively, little is known about how a student's conceptual understanding develops in such learning environments and the difficulties they face when learning with such integrated curricula. In this paper, we present a research study with CTSiM (Computational Thinking in Simulation and Modeling)-computational thinking-based learning environment for K-12 science, where students build and simulate computational models to study and gain an understanding of science processes. We investigate a set of core challenges (both computational and science domain related) that middle school students face when working with CTSiM, how these challenges evolve across different modeling activities, and the kinds of support provided by human observers that help students overcome these challenges. We identify four broad categories and 14 subcategories of challenges and show that the human-provided scaffolds help reduce the number of challenges students face over time. Finally, we discuss our plans to modify the CTSiM interfaces and embed scaffolding tools into CTSiM to help students overcome their various programming, modeling, and science-related challenges and thus gain a deeper understanding of the science concepts.

SELECTION OF CITATIONS
SEARCH DETAIL