Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(22): 15382-15390, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37232036

ABSTRACT

The attachment of silver(I) cations to 5,7,12,14-tetraphenyl-6,13-diazapentacene and its reduced dihydro-form has been studied by electrospray ionization mass spectrometry (ESI-MS). The structure elucidation of the Ag+ complexes has been accomplished in gas-phase collision experiments in conjunction with density functional theory (DFT) calculations. The oxidized form provides a favourable cavity for the Ag+ ion, leading to the [1 : 1] complex with the highest resilience towards dissociation and severely hindering the attainment of a second molecular ligand. When the nitrogen is hydrogenated in the reduced dihydro-form, the cavity is partly blocked. This leads to a less strongly bound [1 : 1] complex ion but facilitates the attachment of a second molecular ligand to the Ag+. The resulting complex is the most stable among the [2 : 1] complexes. DFT calculations provide valuable insight into the geometries of the complex ions. Adding silver(I) to the reduced dihydro-form for cationization also induces its oxidation in solution. The oxidative dehydrogenation reaction, for which a mechanism is proposed, proceeds by first order kinetics and is markedly accelerated by day light.

2.
Chem Commun (Camb) ; 59(39): 5882-5885, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37097081

ABSTRACT

Electrospray-ionization mass spectrometry (ESI-MS) readily produces stable radical cation π-dimers of the superhelicenes. Energy-resolved collision experiments reveal the dissociation of the dicationic dimer into two singly charged superhelicenes. DFT calculations indicate that open-shell dications composed of two radical cations are thermochemically more attractive than the closed-shell dimer formed by a doubly charged and a neutral superhelicene.

3.
Small ; 19(31): e2207238, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36748284

ABSTRACT

Carbon nanodots (CNDs) synthesized from citric acid and formyl derivatives, that is, formamide, urea, or N-methylformamide, stand out through their broad-range visible-light absorbance and extraordinary photostability. Despite their potential, their use has thus far been limited to imaging research. This work has now investigated the link between CNDs' photochemical properties and their chemical structure. Electron-rich, yellow carbon nanodots (yCNDs) are obtained with in situ addition of NaOH during the synthesis, whereas otherwise electron-poor, red carbon nanodots (rCNDs) are obtained. These properties originate from the reduced and oxidized dimer of citrazinic acid within the matrix of yCNDs and rCNDs, respectively. Remarkably, yCNDs deposited on TiO2 give a 30% higher photocurrent density of 0.7 mA cm-2 at +0.3 V versus Ag/AgCl under Xe-lamp irradiation (450 nm long-pass filter, 100 mW cm-2 ) than rCNDs. The difference in overall photoelectric performance is due to fundamentally different charge-transfer mechanisms. These depend on either the electron-accepting or the electron-donating nature of the CNDs, as is evident from photoelectrochemical tests with TiO2 and NiO and time-resolved spectroscopic measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...