Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
2.
Front Physiol ; 14: 1076533, 2023.
Article En | MEDLINE | ID: mdl-36776967

As a model organism, Drosophila is uniquely placed to contribute to our understanding of how brains control complex behavior. Not only does it have complex adaptive behaviors, but also a uniquely powerful genetic toolkit, increasingly complete dense connectomic maps of the central nervous system and a rapidly growing set of transcriptomic profiles of cell types. But this also poses a challenge: Given the massive amounts of available data, how are researchers to Find, Access, Integrate and Reuse (FAIR) relevant data in order to develop an integrated anatomical and molecular picture of circuits, inform hypothesis generation, and find reagents for experiments to test these hypotheses? The Virtual Fly Brain (virtualflybrain.org) web application & API provide a solution to this problem, using FAIR principles to integrate 3D images of neurons and brain regions, connectomics, transcriptomics and reagent expression data covering the whole CNS in both larva and adult. Users can search for neurons, neuroanatomy and reagents by name, location, or connectivity, via text search, clicking on 3D images, search-by-image, and queries by type (e.g., dopaminergic neuron) or properties (e.g., synaptic input in the antennal lobe). Returned results include cross-registered 3D images that can be explored in linked 2D and 3D browsers or downloaded under open licenses, and extensive descriptions of cell types and regions curated from the literature. These solutions are potentially extensible to cover similar atlasing and data integration challenges in vertebrates.

3.
Sci Data ; 10(1): 50, 2023 01 24.
Article En | MEDLINE | ID: mdl-36693887

Large-scale single-cell 'omics profiling is being used to define a complete catalogue of brain cell types, something that traditional methods struggle with due to the diversity and complexity of the brain. But this poses a problem: How do we organise such a catalogue - providing a standard way to refer to the cell types discovered, linking their classification and properties to supporting data? Cell ontologies provide a partial solution to these problems, but no existing ontology schemas support the definition of cell types by direct reference to supporting data, classification of cell types using classifications derived directly from data, or links from cell types to marker sets along with confidence scores. Here we describe a generally applicable schema that solves these problems and its application in a semi-automated pipeline to build a data-linked extension to the Cell Ontology representing cell types in the Primary Motor Cortex of humans, mice and marmosets. The methods and resulting ontology are designed to be scalable and applicable to similar whole-brain atlases currently in preparation.


Biological Ontologies , Brain , Animals , Humans , Mice , Callithrix , Data Collection/standards
4.
Database (Oxford) ; 20222022 10 08.
Article En | MEDLINE | ID: mdl-36208225

Similar to managing software packages, managing the ontology life cycle involves multiple complex workflows such as preparing releases, continuous quality control checking and dependency management. To manage these processes, a diverse set of tools is required, from command-line utilities to powerful ontology-engineering environmentsr. Particularly in the biomedical domain, which has developed a set of highly diverse yet inter-dependent ontologies, standardizing release practices and metadata and establishing shared quality standards are crucial to enable interoperability. The Ontology Development Kit (ODK) provides a set of standardized, customizable and automatically executable workflows, and packages all required tooling in a single Docker image. In this paper, we provide an overview of how the ODK works, show how it is used in practice and describe how we envision it driving standardization efforts in our community. Database URL: https://github.com/INCATools/ontology-development-kit.


Biological Ontologies , Databases, Factual , Metadata , Quality Control , Software , Workflow
...