Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Genes (Basel) ; 13(8)2022 08 04.
Article in English | MEDLINE | ID: mdl-36011298

ABSTRACT

Spot blotch (SB) caused by Bipolaris sorokiniana (Sacc.) Shoem is a destructive fungal disease affecting wheat and many other crops. Synthetic hexaploid wheat (SHW) offers opportunities to explore new resistance genes for SB for introgression into elite bread wheat. The objectives of our study were to evaluate a collection of 441 SHWs for resistance to SB and to identify potential new genomic regions associated with the disease. The panel exhibited high SB resistance, with 250 accessions showing resistance and 161 showing moderate resistance reactions. A genome-wide association study (GWAS) revealed a total of 41 significant marker-trait associations for resistance to SB, being located on chromosomes 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5D, 6D, 7A, and 7D; yet none of them exhibited a major phenotypic effect. In addition, a partial least squares regression was conducted to validate the marker-trait associations, and 15 markers were found to be most important for SB resistance in the panel. To our knowledge, this is the first GWAS to investigate SB resistance in SHW that identified markers and resistant SHW lines to be utilized in wheat breeding.


Subject(s)
Genome-Wide Association Study , Triticum , Chromosome Mapping , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology
2.
Plants (Basel) ; 11(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35161413

ABSTRACT

Synthetic hexaploid wheat (SHW) has shown effective resistance to a diversity of diseases and insects, including tan spot, which is caused by Pyrenophora tritici-repentis, being an important foliar disease that can attack all types of wheat and several grasses. In this study, 443 SHW plants were evaluated for their resistance to tan spot under controlled environmental conditions. Additionally, a genome-wide association study was conducted by genotyping all entries with the DArTSeq technology to identify marker-trait associations for tan spot resistance. Of the 443 SHW plants, 233 showed resistant and 183 moderately resistant reactions, and only 27 were moderately susceptible or susceptible to tan spot. Durum wheat (DW) parents of the SHW showed moderately susceptible to susceptible reactions. A total of 30 significant marker-trait associations were found on chromosomes 1B (4 markers), 1D (1 marker), 2A (1 marker), 2D (2 markers), 3A (4 markers), 3D (3 markers), 4B (1 marker), 5A (4 markers), 6A (6 markers), 6B (1 marker) and 7D (3 markers). Increased resistance in the SHW in comparison to the DW parents, along with the significant association of resistance with the A and B genome, supported the concept of activating epistasis interaction across the three wheat genomes. Candidate genes coding for F-box and cytochrome P450 proteins that play significant roles in biotic stress resistance were identified for the significant markers. The identified resistant SHW lines can be deployed in wheat breeding for tan spot resistance.

3.
J Exp Bot ; 72(14): 5134-5157, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34139769

ABSTRACT

Despite being the world's most widely grown crop, research investments in wheat (Triticum aestivum and Triticum durum) fall behind those in other staple crops. Current yield gains will not meet 2050 needs, and climate stresses compound this challenge. However, there is good evidence that heat and drought resilience can be boosted through translating promising ideas into novel breeding technologies using powerful new tools in genetics and remote sensing, for example. Such technologies can also be applied to identify climate resilience traits from among the vast and largely untapped reserve of wheat genetic resources in collections worldwide. This review describes multi-pronged research opportunities at the focus of the Heat and Drought Wheat Improvement Consortium (coordinated by CIMMYT), which together create a pipeline to boost heat and drought resilience, specifically: improving crop design targets using big data approaches; developing phenomic tools for field-based screening and research; applying genomic technologies to elucidate the bases of climate resilience traits; and applying these outputs in developing next-generation breeding methods. The global impact of these outputs will be validated through the International Wheat Improvement Network, a global germplasm development and testing system that contributes key productivity traits to approximately half of the global wheat-growing area.


Subject(s)
Plant Breeding , Triticum , Climate , Droughts , Translational Research, Biomedical , Triticum/genetics
4.
Sci Rep ; 9(1): 12355, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451719

ABSTRACT

Synthetic hexaploid (SH) wheat (AABBD'D') is developed by artificially generating a fertile hybrid between tetraploid durum wheat (Triticum turgidum, AABB) and diploid wild goat grass (Aegilops tauschii, D'D'). Over three decades, the International Maize and Wheat Improvement Center (CIMMYT) has developed and utilized SH wheat to bridge gene transfer from Ae. tauschii and durum wheat to hexaploid bread wheat. This is a unique example of success utilizing wild relatives in mainstream breeding at large scale worldwide. Our study aimed to determine the genetic contribution of SH wheat to CIMMYT's global spring bread wheat breeding program. We estimated the theoretical and empirical contribution of D' to synthetic derivative lines using the ancestral pedigree and marker information using over 1,600 advanced lines and their parents. The average marker-estimated D' contribution was 17.5% with difference in genome segments suggesting application of differential selection pressure. The pedigree-based contribution was correlated with marker-based estimates without providing chromosome segment specific variation. Results from international yield trials showed that 20% of the lines were synthetic derived with an average D' contribution of 15.6%. Our results underline the importance of SH wheat in maintaining and enhancing genetic diversity and genetic gain over years and is important for development of a more targeted introgression strategy. The study provides retrospective view into development and utilization of SH in the CIMMYT Global Wheat Program.


Subject(s)
Aegilops/genetics , Bread , Plant Breeding , Polyploidy , Seeds/genetics , Triticum/genetics , Aegilops/growth & development , Genetic Markers , Genome, Plant , Triticum/growth & development
5.
Front Plant Sci ; 10: 585, 2019.
Article in English | MEDLINE | ID: mdl-31143197

ABSTRACT

Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding.

6.
Genes Genet Syst ; 80(3): 147-59, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16172528

ABSTRACT

Hordeum vulgare, cultivated barley, and its wild relative, H. chilense, have several important traits that might be useful for wheat improvement. Here, in situ hybridization and barley expressed sequence tag (EST) markers were used to characterize and compare the chromosomes of H. chilense with those of H. vulgare. FISH with four repetitive DNA sequences, AG, AAG, 5S rDNA and 45S rDNA, was applied to the mitotic chromosomes of H. vulgare, H. chilense and available wheat-H. chilense addition and substitution lines. FISH with the AAG repeat differentiated the individual chromosomes of H. chilense and H. vulgare. The patterns of FISH signals in the two species differed greatly. The 45S rDNA signals were observed on two pairs of chromosomes in both species, while the 5S rDNA signals were observed on four pairs of chromosomes in H. vulgare and on one pair in H. chilense. The AG repeat showed FISH signals at the centromeric regions of all chromosomes of H. vulgare but none of the chromosomes of H. chilense. These results indicate that the chromosomes of the two species are highly differentiated. To study the homoeology between the two species, 209 EST markers of H. vulgare were allocated to individual chromosomes of H. chilense. One hundred and forty of the EST markers were allocated to respective chromosomes of H. chilense using the wheat-H. chilense addition and substitution lines. Twenty-six EST markers on average were allocated to each chromosome except to the chromosome 2H(ch)S, to which only 10 markers were allocated. Ninety percent of the allocated EST markers in H. chilense were placed on H. vulgare chromosomes of the same homo-eologous group, indicating that the expressed sequences of the two species were highly conserved. These EST markers would be useful for detecting chromatin introgressed from these species into the wheat genome.


Subject(s)
Chromosomes, Plant/genetics , Genetic Variation , Hordeum/genetics , Chile , Chromosome Mapping , DNA Primers , DNA, Ribosomal/genetics , Expressed Sequence Tags , In Situ Hybridization, Fluorescence , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL