Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging ; 5: 1385963, 2024.
Article in English | MEDLINE | ID: mdl-38903242

ABSTRACT

This paper tackles the complex interplay between Human Immunodeficiency virus (HIV-1) and Mycobacterium tuberculosis (M. tuberculosis) infections, particularly their contribution to immunosenescence, the age-related decline in immune function. Using the current literature, we discuss the immunological mechanisms behind TB and HIV-induced immunosenescence and critically evaluate the BCG (Bacillus Calmette-Guérin) vaccine's role. Both HIV-1 and M. tuberculosis demonstrably accelerate immunosenescence: M. tuberculosis through DNA modification and heightened inflammation, and HIV-1 through chronic immune activation and T cell production compromise. HIV-1 and M. tuberculosis co-infection further hastens immunosenescence by affecting T cell differentiation, underscoring the need for prevention and treatment. Furthermore, the use of the BCG tuberculosis vaccine is contraindicated in patients who are HIV positive and there is a lack of investigation regarding the use of this vaccine in patients who develop HIV co-infection with possible immunosenescence. As HIV does not currently have a vaccine, we focus our review more so on the BCG vaccine response as a result of immunosenescence. We found that there are overall limitations with the BCG vaccine, one of which is that it cannot necessarily prevent re-occurrence of infection due to effects of immunosenescence or protect the elderly due to this reason. Overall, there is conflicting evidence to show the vaccine's usage due to factors involving its production and administration. Further research into developing a vaccine for HIV and improving the BCG vaccine is warranted to expand scientific understanding for public health and beyond.

2.
Glia ; 71(3): 560-570, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36336959

ABSTRACT

ADGRG1 (also called GPR56) plays critical roles in brain development and wiring, including cortical lamination, central nervous system (CNS) myelination, and developmental synaptic refinement. However, the underlying mechanism(s) in mediating such diverse functions is not fully understood. Here, we investigate the function of one specific alternative splicing isoform, the GPR56 splice variant 4 (S4), to test the hypothesis that alternative splicing variants of GPR56 in part support its different functions. We created a new transgenic mouse line, Gpr56∆S4 , using CRISPR/Cas9, in which GPR56 S4 was deleted. Detailed phenotype analyses show that Gpr56∆S4 mice manifest no deficits in cortical architecture and CNS myelination compared to controls. Excitingly, they present significantly increased synapse densities, decreased synapse engulfment by microglia, and impaired eye-segregation. Taken together, our findings support that the GPR56 S4 variant is dispensable for cortical development and CNS myelination but is essential for microglia-mediated synaptic pruning.


Subject(s)
Microglia , Receptors, G-Protein-Coupled , Mice , Animals , Receptors, G-Protein-Coupled/genetics , Mice, Transgenic , Protein Isoforms , Synapses
3.
Sci Adv ; 8(18): eabm2545, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35544642

ABSTRACT

Parvalbumin-positive (PV+) interneurons play a critical role in maintaining circuit rhythm in the brain, and their reduction is implicated in autism spectrum disorders. Animal studies demonstrate that maternal immune activation (MIA) leads to reduced PV+ interneurons in the somatosensory cortex and autism-like behaviors. However, the underlying molecular mechanisms remain largely unknown. Here, we show that MIA down-regulates microglial Gpr56 expression in fetal brains in an interleukin-17a-dependent manner and that conditional deletion of microglial Gpr56 [Gpr56 conditional knockout (cKO)] mimics MIA-induced PV+ interneuron defects and autism-like behaviors in offspring. We further demonstrate that elevated microglial tumor necrosis factor-α expression is the underlying mechanism by which MIA and Gpr56 cKO impair interneuron generation. Genetically restoring Gpr56 expression in microglia ameliorates PV+ interneuron deficits and autism-like behaviors in MIA offspring. Together, our study demonstrates that microglial GPR56 plays an important role in PV+ interneuron development and serves as a salient target of MIA-induced neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autistic Disorder/metabolism , Disease Models, Animal , Interneurons/metabolism , Microglia/metabolism , Parvalbumins/metabolism
4.
Glia ; 69(2): 413-423, 2021 02.
Article in English | MEDLINE | ID: mdl-32902916

ABSTRACT

Myelination of axons in the central nervous system (CNS) is a concerted effort between many cell types, resulting in significant cross-talk and communication among cells. Adhesion G protein-coupled receptor ADGRG1 (GPR56) is expressed in all major glial cells and regulates a wide variety of physiological processes by mediating cell-cell and cell-matrix communications. Previous literature has demonstrated the requirement of ADGRG1 in oligodendrocyte precursor cells (OPCs) during developmental myelination. However, it is unknown if ADGRG1 is responsible for myelin formation in a cell-type-specific manner. To that end, here we profiled myelin status in response to deletion of Adgrg1 specifically in OPCs, microglia, astrocytes, and neurons. Interestingly, we find that knocking out Adgrg1 in OPCs significantly decreases OPC proliferation and reduced number of myelinated axons. However, deleting Adgrg1 in microglia, astrocytes, and neurons does not impact developmental myelination. These data support an autonomous functional role for Adgrg1 in OPCs related to myelination.


Subject(s)
Central Nervous System , Animals , Mice , Mice, Knockout , Myelin Sheath , Oligodendroglia , Receptors, G-Protein-Coupled/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...