Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 133
1.
Arch Pathol Lab Med ; 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38244086

CONTEXT.­: The Nottingham Grading System (NGS) developed by Elston and Ellis is used to grade invasive breast cancer (IBC). Glandular (acinar)/tubule formation is a component of NGS. OBJECTIVE.­: To investigate the ability of pathologists to identify individual structures that should be classified as glandular (acinar)/tubule formation. DESIGN.­: A total of 58 hematoxylin-eosin photographic images of IBC with 1 structure circled were classified as tubules (41 cases) or nontubules (17 cases) by Professor Ellis. Images were sent as a PowerPoint (Microsoft) file to breast pathologists, who were provided with the World Health Organization definition of a tubule and asked to determine if a circled structure represented a tubule. RESULTS.­: Among 35 pathologists, the κ statistic for assessing agreement in evaluating the 58 images was 0.324 (95% CI, 0.314-0.335). The median concordance rate between a participating pathologist and Professor Ellis was 94.1% for evaluating 17 nontubule cases and 53.7% for 41 tubule cases. A total of 41% of the tubule cases were classified correctly by less than 50% of pathologists. Structures classified as tubules by Professor Ellis but often not recognized as tubules by pathologists included glands with complex architecture, mucinous carcinoma, and the "inverted tubule" pattern of micropapillary carcinoma. A total of 80% of participants reported that they did not have clarity on what represented a tubule. CONCLUSIONS.­: We identified structures that should be included as tubules but that were not readily identified by pathologists. Greater concordance for identification of tubules might be obtained by providing more detailed images and descriptions of the types of structures included as tubules.

2.
EBioMedicine ; 100: 104972, 2024 Feb.
Article En | MEDLINE | ID: mdl-38244292

The importance of EZH2 as a key methyltransferase has been well documented theoretically. Practically, the first EZH2 inhibitor Tazemetostat (EPZ6438), was approved by FDA in 2020 and is used in clinic. However, for most solid tumors it is not as effective as desired and the scope of clinical indications is limited, suggesting that targeting its enzymatic activity may not be sufficient. Recent technologies focusing on the degradation of EZH2 protein have drawn attention due to their potential robust effects. This review focuses on the molecular mechanisms that regulate EZH2 protein stability via post-translational modifications (PTMs), mainly including ubiquitination, phosphorylation, and acetylation. In addition, we discuss recent advancements of multiple proteolysis targeting chimeras (PROTACs) strategies and the latest degraders that can downregulate EZH2 protein. We aim to highlight future directions to expand the application of novel EZH2 inhibitors by targeting both EZH2 enzymatic activity and protein stability.


Enhancer of Zeste Homolog 2 Protein , Neoplasms , Humans , Enhancer of Zeste Homolog 2 Protein/metabolism , Carcinogenesis/genetics , Neoplasms/genetics , Neoplasms/metabolism , Cell Transformation, Neoplastic , Enzyme Inhibitors , Protein Stability
3.
JCI Insight ; 8(18)2023 09 22.
Article En | MEDLINE | ID: mdl-37607007

Patients with triple-negative breast cancer remain at risk for metastatic disease despite treatment. The acquisition of chemoresistance is a major cause of tumor relapse and death, but the mechanisms are far from understood. We have demonstrated that breast cancer cells (BCCs) can engulf mesenchymal stem/stromal cells (MSCs), leading to enhanced dissemination. Here, we show that clinical samples of primary invasive carcinoma and chemoresistant breast cancer metastasis contain a unique hybrid cancer cell population coexpressing pancytokeratin and the MSC marker fibroblast activation protein-α. We show that hybrid cells form in primary tumors and that they promote breast cancer metastasis and chemoresistance. Using single-cell microfluidics and in vivo models, we found that there are polyploid senescent cells within the hybrid cell population that contribute to metastatic dissemination. Our data reveal that Wnt Family Member 5A (WNT5A) plays a crucial role in supporting the chemoresistance properties of hybrid cells. Furthermore, we identified that WNT5A mediates hybrid cell formation through a phagocytosis-like mechanism that requires BCC-derived IL-6 and MSC-derived C-C Motif Chemokine Ligand 2. These findings reveal hybrid cell formation as a mechanism of chemoresistance and suggest that interrupting this mechanism may be a strategy in overcoming breast cancer drug resistance.


Mesenchymal Stem Cells , Triple Negative Breast Neoplasms , Humans , Drug Resistance, Neoplasm , Cell Line, Tumor , Neoplasm Recurrence, Local/pathology , Mesenchymal Stem Cells/metabolism , Triple Negative Breast Neoplasms/metabolism
4.
Integr Biol (Camb) ; 152023 04 11.
Article En | MEDLINE | ID: mdl-37015816

This paper describes the manufacture of geometrically inverted mammary organoids encapsulating primary mammary preadipocytes and adipocytes. Material manipulation in an array of 192 hanging drops induces cells to self-assemble into inside-out organoids where an adipose tissue core is enveloped by a cell-produced basement membrane, indicated by laminin V staining and then a continuous layer of mammary epithelial cells. This inverted tissue structure enables investigation of multiple mammary cancer subtypes, with a significantly higher extent of invasion by triple-negative MDA-MB-231 breast cancer cells compared to MCF7 cells. By seeding cancer cells into co-culture around pre-formed organoids with encapsulated preadipocytes/adipocytes, invasion through the epithelium, then into the adipose core is observable through acquisition of confocal image stacks of whole mount specimens. Furthermore, in regions of the connective tissue core where invasion occurs, there is an accumulation of collagen in the microenvironment. Suggesting that this collagen may be conducive to increased invasiveness, the anti-fibrotic drug pirfenidone shows efficacy in this model by slowing invasion. Comparison of adipose tissue derived from three different donors shows method consistency as well as the potential to evaluate donor cell-based biological variability. Insight box Geometrically inverted mammary organoids encapsulating primary preadipocytes/adipocytes (P/As) are bioengineered using a minimal amount of Matrigel scaffolding. Use of this eversion-free method is key to production of adipose mammary organoids (AMOs) where not only the epithelial polarity but also the entire self-organizing arrangement, including adipose position, is inside-out. While an epithelial-only structure can analyze cancer cell invasion, P/As are required for invasion-associated collagen deposition and efficacy of pirfenidone to counteract collagen deposition and associated invasion. The methods described strike a balance between repeatability and preservation of biological variability: AMOs form consistently across multiple adipose cell donors while revealing cancer cell invasion differences.


Triple Negative Breast Neoplasms , Humans , Adipocytes , Collagen , Organoids , Neoplasm Invasiveness , Tumor Microenvironment
5.
ACS Nano ; 17(5): 4396-4403, 2023 03 14.
Article En | MEDLINE | ID: mdl-36847392

We hereby apply the approach of photoacoustic chemical imaging, performing an in vivo chemical analysis that is spatially resolved (200 µm) and in real time, to predict a given tumor's response to therapy. Using triple negative breast cancer as a model, we took photoacoustic images of tumors' oxygen distributions in patient-derived xenografts (PDXs) in mice using biocompatible, oxygen-sensitive tumor-targeted chemical contrast nanoelements (nanosonophores), which function as contrast agents for photoacoustic imaging. Following radiation therapy, we established a quantitatively significant correlation between the spatial distribution of the initial oxygen levels in the tumor and its spatial distribution of the therapy's efficacy: the lower the local oxygen, the lower the local radiation therapy efficacy. We thus provide a simple, noninvasive, and inexpensive method to both predict the efficacy of radiation therapy for a given tumor and identify treatment-resistant regions within the tumor's microenvironment.


Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Animals , Mice , Oxygen , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Neoplasms/pathology , Photoacoustic Techniques/methods , Cell Line, Tumor , Tumor Microenvironment
6.
iScience ; 25(8): 104827, 2022 Aug 19.
Article En | MEDLINE | ID: mdl-35992062

Triple-negative breast cancers (TNBCs) are frequently poorly differentiated with high propensity for metastasis. Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 that mediates transcriptional repression in normal cells and in cancer through H3K27me3. However, H3K27me3-independent non-canonical functions of EZH2 are incompletely understood. We reported that EZH2 phosphorylation at T367 by p38α induces TNBC metastasis in an H3K27me3-independent manner. Here, we show that cytosolic EZH2 methylates p38α at lysine 139 and 165 leading to enhanced p38α stability and that p38 methylation and activation require T367 phosphorylation of EZH2. Dual inhibition of EZH2 methyltransferase and p38 kinase activities downregulates pEZH2-T367, H3K27me3, and p-p38 pathways in vivo and reduces TNBC growth and metastasis. These data uncover a cooperation between EZH2 canonical and non-canonical mechanisms and suggest that inhibition of these pathways may be a potential therapeutic strategy.

7.
Nat Commun ; 13(1): 3606, 2022 06 24.
Article En | MEDLINE | ID: mdl-35750880

Intra-tumoral heterogeneity is a hallmark of glioblastoma that challenges treatment efficacy. However, the mechanisms that set up tumor heterogeneity and tumor cell migration remain poorly understood. Herein, we present a comprehensive spatiotemporal study that aligns distinctive intra-tumoral histopathological structures, oncostreams, with dynamic properties and a specific, actionable, spatial transcriptomic signature. Oncostreams are dynamic multicellular fascicles of spindle-like and aligned cells with mesenchymal properties, detected using ex vivo explants and in vivo intravital imaging. Their density correlates with tumor aggressiveness in genetically engineered mouse glioma models, and high grade human gliomas. Oncostreams facilitate the intra-tumoral distribution of tumoral and non-tumoral cells, and potentially the collective invasion of the normal brain. These fascicles are defined by a specific molecular signature that regulates their organization and function. Oncostreams structure and function depend on overexpression of COL1A1. Col1a1 is a central gene in the dynamic organization of glioma mesenchymal transformation, and a powerful regulator of glioma malignant behavior. Inhibition of Col1a1 eliminates oncostreams, reprograms the malignant histopathological phenotype, reduces expression of the mesenchymal associated genes, induces changes in the tumor microenvironment and prolongs animal survival. Oncostreams represent a pathological marker of potential value for diagnosis, prognosis, and treatment.


Brain Neoplasms , Glioblastoma , Glioma , Animals , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glioma/pathology , Mice , Spatio-Temporal Analysis , Tumor Microenvironment/genetics
8.
Am J Cancer Res ; 12(2): 839-851, 2022.
Article En | MEDLINE | ID: mdl-35261806

Triple-negative/basal-like breast cancer (BC) is characterized by aggressive biological features, which allow relapse and metastatic spread to occur more frequently than in hormone receptor-positive (luminal) subtypes. The molecular complexity of triple-negative/basal-like BC poses major challenges for the implementation of targeted therapies, and chemotherapy remains the standard approach at all stages. The matricellular protein cysteine-rich angiogenic inducer 61 (CCN1/CYR61) is associated with aggressive metastatic phenotypes and poor prognosis in BC, but it is unclear whether anti-CCN1 approaches can be successfully applied in triple-negative/basal-like BC. Herein, we first characterized the prevalence of CNN1 expression in matched samples of primary tumors and metastatic relapse in a series of patients with BC. We then investigated the biological effect of CCN1 depletion on tumorigenic traits in vitro and in vivo using archetypal TNBC cell lines. Immunohistochemical analyses of tissue microarrays revealed a significant increase of the highest CCN1 score in recurrent tissues of triple-negative/basal-like BC tumors. Stable silencing of CCN1 in triple-negative/basal-like BC cells promoted a marked reduction in the expression of the CCN1 integrin receptor αvß3, inhibited anchorage-dependent cell growth, reduced clonogenicity, and impaired migration capacity. In an orthotopic model of triple-negative/basal-like BC, silencing of CCN1 notably reduced tumor burden, which was accompanied by decreased microvessel density and concurrent induction of the luminal epithelial marker E-cadherin. Thus, CNN1/CYR61-targeting strategies might have therapeutic value in suppressing the biological aggressiveness of triple-negative/basal-like BC.

9.
J Cell Commun Signal ; 16(3): 433-445, 2022 Sep.
Article En | MEDLINE | ID: mdl-34811632

Metaplastic breast carcinoma (MBC) is an aggressive subtype of triple negative breast cancer with undefined precursors, limited response to chemotherapy, and frequent distant metastasis. Our laboratory has reported that CCN6/WISP3, a secreted protein that regulates growth factor signaling, is downregulated in over 85% of MBCs. Through generation of a mammary epithelial cell-specific Ccn6 knockout mouse model (MMTV-cre;Ccn6fl/fl) we have demonstrated that CCN6 is a tumor suppressor for MBC; MMTV-cre;Ccn6fl/fl mice develop tumors recapitulating the histopathology and proteogenomic landscape of human MBC, but the mechanisms need further investigation. In this study, we report that preneoplastic mammary glands of 8-week-old MMTV-Cre;Ccn6fl/fl female mice show significant downregulation of mitochondrial respiratory chain genes compared to controls, which are further downregulated in MBCs of MMTV-Cre;Ccn6fl/fl mice and humans. We found that CCN6 downregulation in non-tumorigenic breast cells reduces mitochondrial respiration and increases resistance to stress-induced apoptosis compared to controls. Intracellular ectopic CCN6 protein localizes to the mitochondria in MDA-MB-231 mesenchymal-like breast cancer cells, increases mitochondrial respiration and generation of reactive oxygen species, and reverses doxorubicin resistance of MBC cells. Our data highlight a novel function of CCN6 in the regulation of redox states in preneoplastic progression and suggest potential preventative and treatment strategies against MBC based on CCN6 upregulation.

10.
Am J Clin Pathol ; 157(6): 899-907, 2022 06 07.
Article En | MEDLINE | ID: mdl-34875014

OBJECTIVES: Biomarker expression evaluation for estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 (HER2) is an essential prognostic and predictive parameter for breast cancer and critical for guiding hormonal and neoadjuvant therapy. This study compared quantitative image analysis (QIA) with pathologists' scoring for ER, PgR, and HER2. METHODS: A retrospective analysis was undertaken of 1,367 invasive breast carcinomas, including all histopathology subtypes, for which ER, PgR, and HER2 were analyzed by manual scoring and QIA. The resulting scores were compared, and in a subset of HER2 cases (n = 373, 26%), scores were correlated with available fluorescence in situ hybridization (FISH) results. RESULTS: Concordance between QIA and manual scores for ER, PgR, and HER2 was 93%, 96%, and 90%, respectively. Discordant cases had low positive scores (1%-10%) for ER (n = 33), were due to nonrepresentative region selection (eg, ductal carcinoma in situ) or tumor heterogeneity for PgR (n = 43), and were of one-step difference (negative to equivocal, equivocal to positive, or vice versa) for HER2 (n = 90). Among HER2 cases where FISH results were available, only four (1.0%) showed discordant QIA and FISH results. CONCLUSIONS: QIA is a computer-aided diagnostic support tool for pathologists. It significantly improves ER, PgR, and HER2 scoring standardization. QIA demonstrated excellent concordance with pathologists' scores. To avoid pitfalls, pathologist oversight of representative region selection is recommended.


Breast Neoplasms , Receptors, Progesterone , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Female , Humans , In Situ Hybridization, Fluorescence , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Retrospective Studies
11.
Am J Pathol ; 191(5): 774-783, 2021 05.
Article En | MEDLINE | ID: mdl-33556366

Enhancer of Zeste Homologue 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that is critical for determining cell identity. An epigenetic writer, EZH2 has a well-defined role in transcriptional repression by depositing trimethyl marks on lysine 27 of histone H3. However, there is mounting evidence that histone methyltransferases like EZH2 exert histone methyltransferase-independent functions. The relevance of these functions to breast cancer progression and their regulatory mechanisms are only beginning to become understood. Here, we review the current understanding of EZH2 H3K27me3-independent, noncanonical, functions and their regulation in breast cancer.


Breast Neoplasms/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Humans , Lysine/metabolism , Methylation
12.
J Clin Invest ; 131(4)2021 02 15.
Article En | MEDLINE | ID: mdl-33332283

Mutant isocitrate dehydrogenase 1 (IDH1-R132H; mIDH1) is a hallmark of adult gliomas. Lower grade mIDH1 gliomas are classified into 2 molecular subgroups: 1p/19q codeletion/TERT-promoter mutations or inactivating mutations in α-thalassemia/mental retardation syndrome X-linked (ATRX) and TP53. This work focuses on glioma subtypes harboring mIDH1, TP53, and ATRX inactivation. IDH1-R132H is a gain-of-function mutation that converts α-ketoglutarate into 2-hydroxyglutarate (D-2HG). The role of D-2HG within the tumor microenvironment of mIDH1/mATRX/mTP53 gliomas remains unexplored. Inhibition of D-2HG, when used as monotherapy or in combination with radiation and temozolomide (IR/TMZ), led to increased median survival (MS) of mIDH1 glioma-bearing mice. Also, D-2HG inhibition elicited anti-mIDH1 glioma immunological memory. In response to D-2HG inhibition, PD-L1 expression levels on mIDH1-glioma cells increased to similar levels as observed in WT-IDH gliomas. Thus, we combined D-2HG inhibition/IR/TMZ with anti-PDL1 immune checkpoint blockade and observed complete tumor regression in 60% of mIDH1 glioma-bearing mice. This combination strategy reduced T cell exhaustion and favored the generation of memory CD8+ T cells. Our findings demonstrate that metabolic reprogramming elicits anti-mIDH1 glioma immunity, leading to increased MS and immunological memory. Our preclinical data support the testing of IDH-R132H inhibitors in combination with IR/TMZ and anti-PDL1 as targeted therapy for mIDH1/mATRX/mTP53 glioma patients.


Cellular Reprogramming , Glioma/therapy , Glutarates/pharmacology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Cellular Reprogramming/immunology , Chemoradiotherapy , Gain of Function Mutation , Glioma/genetics , Glioma/immunology , Glioma/pathology , Humans , Immunologic Memory/drug effects , Immunologic Memory/genetics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Mice , Temozolomide/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/immunology
13.
Adv Healthc Mater ; 10(4): e2000810, 2021 02.
Article En | MEDLINE | ID: mdl-32583612

This paper describes mammary organoids with a basal-in phenotype where the basement membrane is located on the interior surface of the organoid. A key materials consideration to induce this basal-in phenotype is the use of a minimal gel scaffold that the epithelial cells self-assemble around and encapsulate. When MDA-MB-231 breast cancer cells are co-cultured with epithelial cells from day 0 under these conditions, cells self-organize into patterns with distinct cancer cell populations both inside and at the periphery of the epithelial organoid. In another type of experiment, the robust formation of the basement membrane on the epithelial organoid interior enables convenient studies of MDA-MB-231 invasion in a tumor progression-relevant direction relative to epithelial cell-basement membrane positioning. That is, the study of cancer invasion through the epithelium first, followed by the basement membrane to the basal side, is realized in an experimentally convenient manner where the cancer cells are simply seeded on the outside of preformed organoids, and their invasion into the organoid is monitored. Interestingly, invasion is more prominent when tumor cells are added to day 7 organoids with less developed basement membranes compared to day 16 organoids with more defined ones.


Epithelial Cells , Organoids , Basement Membrane , Humans , Neoplasm Invasiveness , Phenotype
14.
Breast Cancer ; 28(2): 496-505, 2021 Mar.
Article En | MEDLINE | ID: mdl-33247371

BACKGROUND: Metaplastic carcinoma is an aggressive, triple-negative breast cancer (TNBC) with differentiation towards squamous, spindle, or mesenchymal cell types. The molecular underpinnings of the histological subtypes are unclear. Our lab discovered a cytoplasmic function of EZH2, a transcriptional repressor, whereby pEZH2 T367 binds to cytoplasmic proteins in TNBC cells and enhances invasion and metastasis. Here, we investigated the expression and subcellular localization of pEZH2 T367 protein in metaplastic carcinomas. METHODS: Thirty-five metaplastic carcinomas (17 squamous, 10 mesenchymal, and 8 spindle) were evaluated and immunostained with anti-pEZH2 T367. We analyzed staining intensity (score 1-4), subcellular localization (nuclear/cytoplasmic), and localization within the tumor (center/invasive edge). Protein expression of pEZH2 T367-binding partners was measured from a quantitative multiplex proteomics analysis performed in our lab. RESULTS: Cytoplasmic pEZH2 T367 was significantly upregulated in squamous (14 of 17, 82%) compared to mesenchymal (4 of 10, 40%) and spindle (2 of 6, 33%) subtypes (p = 0.011). Twenty-five of 34 (73%) tumors with available tumor-normal interface showed accentuated cytoplasmic pEZH2 T367 at the infiltrative edge. Cytoplasmic pEZH2 T367 was upregulated in 9 of 10 (90%) tumors with lymph node metastasis (p = 0.05). Bioinformatics analyses identified an EZH2 protein network in metaplastic carcinomas (p value: < 1.0e-16). Using quantitative proteomics, we found significantly increased expression of cytoplasmic EZH2-binding partners in squamous compared to spindle and mesenchymal subtypes. CONCLUSIONS: pEZH2 T367 expression and subcellular localization may be useful to distinguish metaplastic carcinoma subtypes. pEZH2 T367 may play a role in the histological diversity and behavior of these tumors.


Carcinoma, Squamous Cell/metabolism , Cytoplasm/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Proteome , Triple Negative Breast Neoplasms/metabolism , Cohort Studies , Computational Biology/methods , Female , Humans , Immunohistochemistry/methods , Lymphatic Metastasis , Middle Aged , Phosphorylation , Prognosis , Proteomics/methods , Triple Negative Breast Neoplasms/classification , Up-Regulation
15.
Nat Commun ; 11(1): 1723, 2020 04 07.
Article En | MEDLINE | ID: mdl-32265444

Metaplastic breast carcinoma (MBC) is a highly aggressive form of triple-negative cancer (TNBC), defined by the presence of metaplastic components of spindle, squamous, or sarcomatoid histology. The protein profiles underpinning the pathological subtypes and metastatic behavior of MBC are unknown. Using multiplex quantitative tandem mass tag-based proteomics we quantify 5798 proteins in MBC, TNBC, and normal breast from 27 patients. Comparing MBC and TNBC protein profiles we show MBC-specific increases related to epithelial-to-mesenchymal transition and extracellular matrix, and reduced metabolic pathways. MBC subtypes exhibit distinct upregulated profiles, including translation and ribosomal events in spindle, inflammation- and apical junction-related proteins in squamous, and extracellular matrix proteins in sarcomatoid subtypes. Comparison of the proteomes of human spindle MBC with mouse spindle (CCN6 knockout) MBC tumors reveals a shared spindle-specific signature of 17 upregulated proteins involved in translation and 19 downregulated proteins with roles in cell metabolism. These data identify potential subtype specific MBC biomarkers and therapeutic targets.


Biomarkers, Tumor/metabolism , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Squamous Cell/metabolism , Proteome/metabolism , Sarcoma/metabolism , Triple Negative Breast Neoplasms/metabolism , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/secondary , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/secondary , Epithelial-Mesenchymal Transition/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Female , Humans , Inflammation/metabolism , Metabolic Networks and Pathways/genetics , Metaplasia/genetics , Metaplasia/metabolism , Mice , Middle Aged , Mutation , Protein Biosynthesis/genetics , Proteome/genetics , Proteomics , Sarcoma/genetics , Sarcoma/secondary , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
16.
Mod Pathol ; 33(8): 1537-1545, 2020 08.
Article En | MEDLINE | ID: mdl-32152520

African and African-American (AA) women have higher incidence of triple-negative breast cancers (TNBC) with high histological grade and aggressive clinical behavior, but the reasons are not fully understood. We recently found that the oncogenic protein EZH2 is overexpressed in Ghanaian breast cancer patients, with 16% of the tumors expressing cytoplasmic EZH2. Understanding the molecular underpinnings of these aggressive tumors may lead to the identification of potential targetable oncogenic drivers. We characterized the copy number variations of 11 Ghanaian breast tumor patients by targeted multiplexed PCR-based DNA next-generation sequencing (NGS) over 130 cancer-relevant genes. While the DNA quality was not optimal for mutation analysis, 90% of the tumors had frequent recurrent copy number alterations (CNAs) of 17 genes: SDHC, RECQL4, TFE3, BCL11A, BCL2L1, PDGFRA, DEK, SMUG1, AKT3, SMARCA4, VHL, KLF6, CCNE1, G6PD, FGF3, ABL1, and CCND1, with the top oncogenic functions being mitotic G1-G1/S-phase regulation, gene transcription, apoptosis, and PI3K/AKT pathway. The most common recurrent high-level CNAs were gains of RECQL4 and SDHC, in 50% and 60% of cases, respectively. Network analyses revealed a significant predicted interaction among 12 of the 17 (70.6%) genes with high-level CNAs (p = 5.7E-07), which was highly correlated with EZH2 expression (r = 0.4-0.75). By immunohistochemistry, RECQL4 and SDHC proteins were upregulated in 53 of 86 (61.6%) and 48 of 86 (56%) of Ghanaian invasive carcinoma tissue samples. In conclusion, our data show that invasive carcinomas from Ghana exhibit recurrent CNAs in 17 genes, with functions in oncogenic pathways, including PI3K/AKT and G1-G1/S regulation, which may have implications for the biology and treatment of invasive carcinomas in African and AA women.


Breast Neoplasms/genetics , DNA Copy Number Variations/genetics , Adult , Female , Ghana , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Sequence Analysis, DNA
18.
Arch Pathol Lab Med ; 143(12): 1492-1496, 2019 12.
Article En | MEDLINE | ID: mdl-31765246

CONTEXT­: Metaplastic carcinoma is a rare, triple-negative carcinoma of the breast that exhibits transformation of part or all of its glandular carcinomatous component into a nonglandular, or metaplastic, component. The World Health Organization currently recognizes 5 variants of metaplastic carcinoma based on their histologic appearance. OBJECTIVE­: To review the histologic classifications, differential diagnosis, prognosis, and recent laboratory studies of metaplastic breast carcinoma. DATA SOURCES.­: We reviewed recently published studies that collectively examine metaplastic carcinomas, including results from our own research. CONCLUSIONS.­: Metaplastic breast carcinoma has a broad spectrum of histologic patterns, often leading to a broad differential diagnosis. Diagnosis can typically be rendered by a combination of morphology and immunohistochemical staining for high-molecular-weight cytokeratins and p63. Recent studies elucidate new genes and pathways involved in the pathogenesis of metaplastic carcinoma, including the downregulation of CCN6 and WNT pathway gene mutations, and provide a novel MMTV-Cre;Ccn6fl/fl knockout disease-relevant mouse model to test new therapies.


Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Animals , Biomarkers, Tumor/analysis , Female , Humans , Metaplasia/diagnosis , Metaplasia/genetics , Metaplasia/pathology , Triple Negative Breast Neoplasms/diagnosis
19.
Nat Commun ; 10(1): 5114, 2019 11 08.
Article En | MEDLINE | ID: mdl-31704972

Triple-negative breast cancer (TNBC), which lacks estrogen receptor α (ERα), progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expression, is closely related to basal-like breast cancer. Previously, we and others report that cyclin E/cyclin-dependent kinase 2 (CDK2) phosphorylates enhancer of zeste homolog 2 (EZH2) at T416 (pT416-EZH2). Here, we show that transgenic expression of phospho-mimicking EZH2 mutant EZH2T416D in mammary glands leads to tumors with TNBC phenotype. Coexpression of EZH2T416D in mammary epithelia of HER2/Neu transgenic mice reprograms HER2-driven luminal tumors into basal-like tumors. Pharmacological inhibition of CDK2 or EZH2 allows re-expression of ERα and converts TNBC to luminal ERα-positive, rendering TNBC cells targetable by tamoxifen. Furthermore, the combination of either CDK2 or EZH2 inhibitor with tamoxifen effectively suppresses tumor growth and markedly improves the survival of the mice bearing TNBC tumors, suggesting that the mechanism-based combination therapy may be an alternative approach to treat TNBC.


Cyclin-Dependent Kinase 2/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Estrogen Receptor alpha/drug effects , Mammary Neoplasms, Experimental/genetics , Triple Negative Breast Neoplasms/genetics , Animals , Benzamides/pharmacology , Biphenyl Compounds , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic N-Oxides , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , Indolizines , Mammary Glands, Human/drug effects , Mammary Glands, Human/metabolism , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Transgenic , Morpholines , Phosphorylation , Pyridinium Compounds/pharmacology , Pyridones/pharmacology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Progesterone/metabolism , Triple Negative Breast Neoplasms/metabolism
20.
Nat Commun ; 10(1): 4182, 2019 09 13.
Article En | MEDLINE | ID: mdl-31519911

Myoepithelial cells play key roles in normal mammary gland development and in limiting pre-invasive to invasive breast tumor progression, yet their differentiation and perturbation in ductal carcinoma in situ (DCIS) are poorly understood. Here, we investigated myoepithelial cells in normal breast tissues of BRCA1 and BRCA2 germline mutation carriers and in non-carrier controls, and in sporadic DCIS. We found that in the normal breast of non-carriers, myoepithelial cells frequently co-express the p63 and TCF7 transcription factors and that p63 and TCF7 show overlapping chromatin peaks associated with differentiated myoepithelium-specific genes. In contrast, in normal breast tissues of BRCA1 mutation carriers the frequency of p63+TCF7+ myoepithelial cells is significantly decreased and p63 and TCF7 chromatin peaks do not overlap. These myoepithelial perturbations in normal breast tissues of BRCA1 germline mutation carriers may play a role in their higher risk of breast cancer. The fraction of p63+TCF7+ myoepithelial cells is also significantly decreased in DCIS, which may be associated with invasive progression.


BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , Carcinoma, Ductal, Breast/metabolism , Mutation/genetics , Animals , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carcinoma, Ductal, Breast/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Female , Fluorescent Antibody Technique , Germ-Line Mutation/genetics , Humans , Immunohistochemistry , Mice , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
...