Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Sci Adv ; 9(2): eade0869, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36630517

ABSTRACT

Parvovirus B19 (B19V) infects human erythroid progenitor cells (EPCs) and causes several hematological disorders and fetal hydrops. Amino acid (aa) 5-68 of minor capsid protein VP1 (VP1u5-68aa) is the minimal receptor binding domain for B19V to enter EPCs. Here, we carried out a genome-wide CRISPR-Cas9 guide RNA screen and identified tyrosine protein kinase receptor UFO (AXL) as a proteinaceous receptor for B19V infection of EPCs. AXL gene silencing in ex vivo expanded EPCs remarkably decreased B19V internalization and replication. Additions of the recombinant AXL extracellular domain or a polyclonal antibody against it upon infection efficiently inhibited B19V infection of ex vivo expanded EPCs. Moreover, B19V VP1u interacted with the recombinant AXL extracellular domain in vitro at a relatively high affinity (KD = 103 nM). Collectively, we provide evidence that AXL is a co-receptor for B19V infection of EPCs.


Subject(s)
Axl Receptor Tyrosine Kinase , Erythema Infectiosum , Parvovirus B19, Human , Humans , Capsid Proteins/genetics , Capsid Proteins/metabolism , Erythema Infectiosum/metabolism , Parvovirus B19, Human/genetics , Parvovirus B19, Human/metabolism , Protein Binding , Axl Receptor Tyrosine Kinase/metabolism
2.
Pediatr Res ; 94(1): 200-205, 2023 07.
Article in English | MEDLINE | ID: mdl-36376507

ABSTRACT

BACKGROUND: A suboptimal response to the 2-dose COVID-19 vaccine series in the immunocompromised population prompted recommendations for a 3rd primary dose. We aimed to determine the humoral and cellular immune response to the 3rd COVID-19 vaccine in immunocompromised children. METHODS: Prospective cohort study of immunocompromised participants, 5-21 years old, who received 2 prior doses of an mRNA COVID-19 vaccine. Humoral and CD4/CD8 T-cell responses were measured to SARS-CoV-2 spike antigens prior to receiving the 3rd vaccine dose and 3-4 weeks after the 3rd dose was given. RESULTS: Of the 37 participants, approximately half were solid organ transplant recipients. The majority (86.5%) had a detectable humoral response after the 2nd and 3rd vaccine doses, with a significant increase in antibody levels after the 3rd dose. Positive T-cell responses increased from being present in 86.5% to 100% of the cohort after the 3rd dose. CONCLUSIONS: Most immunocompromised children mount a humoral and cellular immune response to the 2-dose COVID-19 vaccine series, which is significantly augmented after receiving the 3rd vaccine dose. This supports the utility of the 3rd vaccine dose and the rationale for ongoing emphasis for vaccination against COVID-19 in this population. IMPACT: Most immunocompromised children mount a humoral and cellular immune response to the 2-dose COVID-19 vaccine series, which is significantly augmented after receiving the 3rd vaccine dose. This is the first prospective cohort study to analyze both the humoral and T-cell immune response to the 3rd COVID-19 primary vaccine dose in children who are immunocompromised. The results of this study support the utility of the 3rd vaccine dose and the rationale for ongoing emphasis for vaccination against COVID-19 in the immunosuppressed pediatric population.


Subject(s)
COVID-19 Vaccines , COVID-19 , Child , Humans , Child, Preschool , Adolescent , Young Adult , Adult , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Vaccination , Antibodies, Viral , Immunity, Cellular , Immunity, Humoral
4.
J Virol ; 96(2): e0132621, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34669461

ABSTRACT

Parvovirus B19 (B19V) infection can cause hematological disorders and fetal hydrops during pregnancy. Currently, no antivirals or vaccines are available for the treatment or prevention of B19V infection. To identify novel small-molecule antivirals against B19V replication, we developed a high-throughput screening (HTS) assay, which is based on an in vitro nicking assay using recombinant N-terminal amino acids 1 to 176 of the viral large nonstructural protein (NS1N) and a fluorescently labeled DNA probe (OriQ) that spans the nicking site of the viral DNA replication origin. We collectively screened 17,040 compounds and identified 2,178 (12.78%) hits that possess >10% inhibition of the NS1 nicking activity, among which 84 hits were confirmed to inhibit nicking in a dose-dependent manner. Using ex vivo-expanded primary human erythroid progenitor cells (EPCs) infected by B19V, we validated 24 compounds that demonstrated >50% in vivo inhibition of B19V infection at 10 µM, which can be categorized into 7 structure scaffolds. Based on the therapeutic index (half-maximal cytotoxic concentration [CC50]/half-maximal effective concentration [EC50] ratio) in EPCs, the top 4 compounds were chosen to examine their inhibitions of B19V infection in EPCs at two times of the 90% maximal effective concentration (EC90). A purine derivative (P7) demonstrated an antiviral effect (EC50 = 1.46 µM) without prominent cytotoxicity (CC50 = 71.8 µM) in EPCs and exhibited 92% inhibition of B19V infection in EPCs at 3.32 µM, which can be used as the lead compound in future studies for the treatment of B19V infection-caused hematological disorders. IMPORTANCE B19V encodes a large nonstructural protein, NS1. Its N-terminal domain (NS1N) consisting of amino acids 1 to 176 binds to viral DNA and serves as an endonuclease to nick the viral DNA replication origins, which is a pivotal step in rolling-hairpin-dependent B19V DNA replication. For high-throughput screening (HTS) of anti-B19V antivirals, we miniaturized a fluorescence-based in vitro nicking assay, which employs a fluorophore-labeled probe spanning the terminal resolution site (trs) and the NS1N protein, into a 384-well-plate format. The HTS assay showed high reliability and capability in screening 17,040 compounds. Based on the therapeutic index (half-maximal cytotoxic concentration [CC50]/half-maximal effective concentration [EC50] ratio) in EPCs, a purine derivative demonstrated an antiviral effect of 92% inhibition of B19V infection in EPCs at 3.32 µM (two times the EC90). Our study demonstrated a robust HTS assay for screening antivirals against B19V infection.


Subject(s)
Antiviral Agents/pharmacology , Erythroid Precursor Cells/virology , High-Throughput Screening Assays/methods , Parvovirus B19, Human/drug effects , Antiviral Agents/chemistry , Cell Survival/drug effects , DNA Replication/drug effects , DNA, Viral/metabolism , Erythroid Precursor Cells/drug effects , Fluorescent Dyes , Humans , Parvovirus B19, Human/physiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Replication Origin , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
5.
Am J Transplant ; 22(2): 532-540, 2022 02.
Article in English | MEDLINE | ID: mdl-34510731

ABSTRACT

Donor-derived cell-free DNA (dd-cfDNA) has been evaluated as a rejection marker in organ transplantation. This study sought to assess the utility of dd-cfDNA to diagnose graft injury in liver transplant recipients (LTR) and as a predictive biomarker prior to different causes of graft dysfunction. Plasma from single and multicenter LTR cohorts was analyzed for dd-cfDNA. Phenotypes of treated biopsy-proven acute rejection (AR, N = 57), normal function (TX, N = 94), and acute dysfunction no rejection (ADNR; N = 68) were divided into training and test sets. In the training set, dd-cfDNA was significantly different between AR versus TX (AUC 0.95, 5.3% cutoff) and AR versus ADNR (AUC 0.71, 20.4% cutoff). Using these cutoffs in the test set, the accuracy and NPV were 87% and 100% (AR vs. TX) and 66.7% and 87.8% (AR vs. ADNR). Blood samples collected serially from LTR demonstrated incremental elevations in dd-cfDNA prior to the onset of graft dysfunction (AR > ADNR), but not in TX. Dd-cfDNA also decreased following treatment of rejection. In conclusion, the serial elevation of dd-cfDNA identifies pre-clinical graft injury in the context of normal liver function tests and is greatest in rejection. This biomarker may help detect early signs of graft injury and rejection to inform LTR management strategies.


Subject(s)
Cell-Free Nucleic Acids , Kidney Transplantation , Liver Transplantation , Biomarkers , Graft Rejection/etiology , Graft Rejection/genetics , Humans , Liver Transplantation/adverse effects , Tissue Donors , Transplant Recipients
6.
Clin J Am Soc Nephrol ; 16(10): 1539-1551, 2021 10.
Article in English | MEDLINE | ID: mdl-34620649

ABSTRACT

BACKGROUND AND OBJECTIVES: Subclinical acute rejection is associated with poor outcomes in kidney transplant recipients. As an alternative to surveillance biopsies, noninvasive screening has been established with a blood gene expression profile. Donor-derived cellfree DNA (cfDNA) has been used to detect rejection in patients with allograft dysfunction but not tested extensively in stable patients. We hypothesized that we could complement noninvasive diagnostic performance for subclinical rejection by combining a donor-derived cfDNA and a gene expression profile assay. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We performed a post hoc analysis of simultaneous blood gene expression profile and donor-derived cfDNA assays in 428 samples paired with surveillance biopsies from 208 subjects enrolled in an observational clinical trial (Clinical Trials in Organ Transplantation-08). Assay results were analyzed as binary variables, and then, their continuous scores were combined using logistic regression. The performance of each assay alone and in combination was compared. RESULTS: For diagnosing subclinical rejection, the gene expression profile demonstrated a negative predictive value of 82%, a positive predictive value of 47%, a balanced accuracy of 64%, and an area under the receiver operating curve of 0.75. The donor-derived cfDNA assay showed similar negative predictive value (84%), positive predictive value (56%), balanced accuracy (68%), and area under the receiver operating curve (0.72). When both assays were negative, negative predictive value increased to 88%. When both assays were positive, positive predictive value increased to 81%. Combining assays using multivariable logistic regression, area under the receiver operating curve was 0.81, significantly higher than the gene expression profile (P<0.001) or donor-derived cfDNA alone (P=0.006). Notably, when cases were separated on the basis of rejection type, the gene expression profile was significantly better at detecting cellular rejection (area under the receiver operating curve, 0.80 versus 0.62; P=0.001), whereas the donor-derived cfDNA was significantly better at detecting antibody-mediated rejection (area under the receiver operating curve, 0.84 versus 0.71; P=0.003). CONCLUSIONS: A combination of blood-based biomarkers can improve detection and provide less invasive monitoring for subclinical rejection. In this study, the gene expression profile detected more cellular rejection, whereas donor-derived cfDNA detected more antibody-mediated rejection.


Subject(s)
Cell-Free Nucleic Acids/blood , DNA/blood , Gene Expression Profiling , Graft Rejection/diagnosis , Kidney Transplantation/adverse effects , Tissue Donors , Transcriptome , Adult , Asymptomatic Diseases , Biomarkers/blood , Biopsy , Cell-Free Nucleic Acids/genetics , DNA/genetics , Female , Graft Rejection/blood , Graft Rejection/genetics , Graft Rejection/immunology , Humans , Male , Middle Aged , Predictive Value of Tests , Reproducibility of Results , Treatment Outcome , United States , Young Adult
7.
J Virol ; 95(14)2021 06 24.
Article in English | MEDLINE | ID: mdl-33952637

ABSTRACT

Parvovirus B19 (B19V) infection causes diseases in humans ranging from the mild erythema infectiosum to severe hematological disorders. The unique region of the minor structural protein VP1 (VP1u) of 227 amino acids harbors strong neutralizing epitopes which elicit dominant immune responses in patients. Recent studies have shown that the VP1u selectively binds to and enters B19V permissive cells through an unknown cellular proteinaceous receptor. In the present study, we demonstrated that purified recombinant VP1u effectively inhibits B19V infection of ex vivo expanded primary human erythroid progenitors. Furthermore, we identified the amino acid sequence 5-68 of the VP1 (VP1u5-68aa) is sufficient to confer the inhibition of B19V infection at a level similar to that of the full-length VP1u. In silico structure prediction suggests that the VP1u5-68aa contains three α-helices. Importantly, we found that the inhibition capability of the minimal domain VP1u5-68aa is independent of its dimerization but is likely dependent on the structure of the three predicated α-helices. As VP1u5-68aa outcompetes the full-length VP1u in entering cells, we believe that VP1u5-68aa functions as a receptor-binding ligand during virus entry. Finally, we determined the effective inhibition potency of VP1u5-68aa in B19V infection of human erythroid progenitors, which has a half maximal effective concentration (EC50) of 67 nM, suggesting an anti-viral peptide candidate to combat B19V infection.IMPORTANCEHuman parvovirus B19 infection causes severe hematological disorders, including transient aplastic crisis, pure red cell aplasia, and hydrops fetalis. A productive B19 infection is highly restricted to human erythroid progenitors in human bone marrow and fetal liver. In the current study, we identified that the N-terminal 5-68 amino acids domain of the minor viral capsid protein VP1 enters ex vivo expanded human erythroid progenitors, which is nearly 5 times more efficient than the full-length VP1 unique region (1-227aa). Importantly, purified recombinant 5-68aa of the VP1 has a high efficiency in inhibition of parvovirus B19 infection of human erythroid progenitors, which has a half maximal effective concentration (EC50) of 67 nM and a low cytotoxicity. The N-terminal 5-68 amino acids holds the potential as an effective antiviral of parvovirus B19 caused hematological disorders, as well as a carrier to deliver proteins to human erythroid progenitors.

8.
J Fungi (Basel) ; 6(4)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019729

ABSTRACT

We evaluated the performance of the (1,3)-ß-d-glucan (BDG) assay on bronchoalveolar lavage fluid (BALF) as a possible aid to the diagnosis of Pneumocystis jirovecii pneumonia. BALF samples from 18 patients with well-characterized proven, probable, and possible Pneumocystis pneumonia and 18 well-matched controls were tested. We found that the best test performance was observed with a cut-off value of 128 pg/mL; receiver operating characteristic/area under the curve (ROC/AUC) was 0.70 (95% CI 0.52-0.87). Sensitivity and specificity were 78% and 56%, respectively; positive predictive value was 64%, and negative predictive value was 71%. The low specificity that we noted limits the utility of BALF BDG as a diagnostic tool for Pneumocystis pneumonia.

9.
Mycopathologia ; 185(5): 925-929, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32815095

ABSTRACT

Detection of (1,3)-beta-D-glucan (BDG), a component of the cell wall of many fungi, was studied in bronchoalveolar lavage fluid (BALF) as a possible aid for the diagnosis of proven/probable invasive pulmonary aspergillosis (IPA). BDG was measured on stored BALF from 13 patients with EORTC/MSGERC defined proven/probable IPA and 26 matched control patients without IPA. The median BALF BDG was 80 pg/mL (range < 45-8240 pg/mL) in the IPA cohort and 148 pg/mL (range < 45-5460 pg/mL) in the non-IPA cohort. Using a positive cutoff of ≥ 80 pg/mL, sensitivity was 54% and specificity was 38%. Higher cutoff values led to improvement in specificity but a dramatic decrease in sensitivity. ROC/AUC analysis was unable to identify an optimal cutoff value at which test performance was enhanced: AUC 0.43, 95% CI 0.24-0.63. When the BDG assay was performed on BALF, neither sensitivity nor specificity was sufficient for use in the diagnosis of IPA.


Subject(s)
Invasive Pulmonary Aspergillosis/diagnosis , beta-Glucans/analysis , Adult , Aged , Bronchoalveolar Lavage Fluid/microbiology , Cohort Studies , Diagnostic Tests, Routine , Female , Humans , Male , Middle Aged , Pneumonia/microbiology , Proteoglycans , Sensitivity and Specificity
10.
mBio ; 11(2)2020 03 10.
Article in English | MEDLINE | ID: mdl-32156816

ABSTRACT

During infection of human parvovirus B19 (B19V), one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter and is alternatively spliced and alternatively polyadenylated. Here, we identified a novel cis-acting sequence (5'-GUA AAG CUA CGG GAC GGU-3'), intronic splicing enhancer 3 (ISE3), which lies 72 nucleotides upstream of the second splice acceptor (A2-2) site of the second intron that defines the exon of the mRNA encoding the 11-kDa viral nonstructural protein. RNA binding motif protein 45 (RBM45) specifically binds to ISE3 with high affinity (equilibrium dissociation constant [KD ] = 33 nM) mediated by its RNA recognition domain and 2-homo-oligomer assembly domain (RRM2-HOA). Knockdown of RBM45 expression or ectopic overexpression of RRM2-HOA in human erythroid progenitor cells (EPCs) expanded ex vivo significantly decreased the level of viral mRNA spliced at the A2-2 acceptor but not that of the mRNA spliced at A2-1 that encodes VP2. Moreover, silent mutations of ISE3 in an infectious DNA of B19V significantly reduced 11-kDa expression. Notably, RBM45 also specifically interacts in vitro with ISE2, which shares the octanucleotide (GGGACGGU) with ISE3. Taken together, our results suggest that RBM45, through binding to both ISE2 and ISE3, is an essential host factor for maturation of 11-kDa-encoding mRNA.IMPORTANCE Human parvovirus B19 (B19V) is a human pathogen that causes severe hematological disorders in immunocompromised individuals. B19V infection has a remarkable tropism with respect to human erythroid progenitor cells (EPCs) in human bone marrow and fetal liver. During B19V infection, only one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter of the viral genome and is alternatively spliced and alternatively polyadenylated, a process which plays a key role in expression of viral proteins. Our studies revealed that a cellular RNA binding protein, RBM45, binds to two intron splicing enhancers and is essential for the maturation of the small nonstructural protein 11-kDa-encoding mRNA. The 11-kDa protein plays an important role not only in B19V infection-induced apoptosis but also in viral DNA replication. Thus, the identification of the RBM45 protein and its cognate binding site in B19V pre-mRNA provides a novel target for antiviral development to combat B19V infection-caused severe hematological disorders.


Subject(s)
Gene Expression Regulation, Viral , Introns , Nerve Tissue Proteins/metabolism , Parvovirus B19, Human/genetics , RNA Splicing , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/genetics , Cells, Cultured , Erythroid Precursor Cells/virology , Genome, Viral , Hematopoietic Stem Cells , Humans , Nerve Tissue Proteins/genetics , Parvovirus B19, Human/metabolism , Protein Binding , RNA Precursors/genetics , RNA Precursors/metabolism , RNA-Binding Proteins/genetics , Viral Nonstructural Proteins/metabolism
11.
Clin Infect Dis ; 71(12): 3044-3054, 2020 12 15.
Article in English | MEDLINE | ID: mdl-31851312

ABSTRACT

BACKGROUND: BK polyomavirus (BKPyV) is associated with symptomatic hemorrhagic cystitis after hematopoietic cell transplantation (HCT). Little is known about the host immune response, effectiveness of antiviral treatment, or impact of asymptomatic replication on long-term kidney function. METHODS: In children and young adults undergoing allogeneic HCT, we quantified BKPyV viruria and viremia (pre-HCT and at Months 1-4, 8, 12, and 24 post-HCT) and tested associations of peak viremia ≥10 000 or viruria ≥109 copies/mL with estimated kidney function (glomerular filtration rate, eGFR) and overall survival at 2 years posttransplant. We examined the factors associated with viral clearance by Month 4, including BKPyV-specific T cells by enzyme-linked immune absorbent spot at Month 3 and cidofovir use. RESULTS: We prospectively enrolled 193 participants (median age 10 years) and found that 18% had viremia ≥10 000 copies/mL and 45% had viruria ≥109 copies/mL in the first 3 months post-HCT. Among the 147 participants without cystitis (asymptomatic), 58 (40%) had any viremia. In the entire cohort and asymptomatic subset, having viremia ≥10 000 copies/mL was associated with a lower creatinine/cystatin C eGFR at 2 years post-HCT. Viremia ≥10 000 copies/mL was associated with a higher risk of death (adjusted hazard ratio, 2.2; 95% confidence interval, 1.1-4.2). Clearing viremia was associated with detectable BKPyV-specific T cells and having viremia <10 000 copies/mL, but not cidofovir exposure. CONCLUSIONS: Screening for BKPyV viremia after HCT identifies asymptomatic patients at risk for kidney disease and reduced survival. These data suggest potential changes to clinical practice, including prospective monitoring for BKPyV viremia to test virus-specific T cells to prevent or treat BKPyV replication.


Subject(s)
BK Virus , Hematopoietic Stem Cell Transplantation , Polyomavirus Infections , Child , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunity , Polyomavirus Infections/epidemiology , Prospective Studies , Stem Cell Transplantation , Young Adult
12.
Front Immunol ; 10: 1890, 2019.
Article in English | MEDLINE | ID: mdl-31507586

ABSTRACT

Background: A previously proposed immune risk profile (IRP), based on T cell phenotype and CMV serotype, is associated with mortality in the elderly and increased infections post-kidney transplant. To evaluate if NK cells contribute to the IRP and if the IRP can be predicted by a clinical T cell functional assays, we conducted a cross sectional study in renal transplant candidates to determine the incidence of IRP and its association with specific NK cell characteristics and ImmuKnow® value. Material and Methods: Sixty five subjects were enrolled in 5 cohorts designated by age and dialysis status. We determined T and NK cell phenotypes by flow cytometry and analyzed multiple factors contributing to IRP. Results: We identified 14 IRP+ [CMV seropositivity and CD4/CD8 ratio < 1 or being in the highest quintile of CD8+ senescent (28CD-/CD57+) T cells] individuals equally divided amongst the cohorts. Multivariable linear regression revealed a distinct IRP+ group. Age and dialysis status did not predict immune senescence in kidney transplant candidates. NK cell features alone could discriminate IRP- and IRP+ patients, suggesting that NK cells significantly contribute to the overall immune status in kidney transplant candidates and that a combined T and NK cell phenotyping can provide a more detailed IRP definition. ImmuKnow® value was negatively correlated to age and significantly lower in IRP+ patients and predicts IRP when used alone or in combination with NK cell features. Conclusion: NK cells contribute to overall immune senescence in kidney transplant candidates.


Subject(s)
Killer Cells, Natural/immunology , Aged , CD4-CD8 Ratio/methods , CD4-Positive T-Lymphocytes/immunology , CD57 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cohort Studies , Cross-Sectional Studies , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Female , Flow Cytometry/methods , Humans , Kidney Transplantation/methods , Male , Middle Aged
13.
J Virol ; 93(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30282717

ABSTRACT

Lytic infection of human parvovirus B19 (B19V) takes place exclusively in human erythroid progenitor cells of bone marrow and fetal liver, which disrupts erythropoiesis. During infection, B19V expresses three nonstructural proteins (NS1, 11-kDa, and 7.5-kDa) and two structural proteins (VP1 and VP2). While NS1 is essential for B19V DNA replication, 11-kDa enhances viral DNA replication significantly. In this study, we confirmed the enhancement role of 11-kDa in viral DNA replication and elucidated the underlying mechanism. We found that 11-kDa specially interacts with cellular growth factor receptor-bound protein 2 (Grb2) during virus infection and in vitro We determined a high affinity interaction between 11-kDa and Grb2 that has an equilibrium dissociation constant (KD ) value of 18.13 nM. In vitro, one proline-rich motif was sufficient for 11-kDa to sustain a strong interaction with Grb2. In consistence, in vivo during infection, one proline-rich motif was enough for 11-kDa to significantly reduce phosphorylation of extracellular signal-regulated kinase (ERK). Mutations of all three proline-rich motifs of 11-kDa abolished its capability to reduce ERK activity and, accordingly, decreased viral DNA replication. Transduction of a lentiviral vector encoding a short hairpin RNA (shRNA) targeting Grb2 decreased the expression of Grb2 as well as the level of ERK phosphorylation, which resulted in an increase of B19V replication. These results, in concert, indicate that the B19V 11-kDa protein interacts with cellular Grb2 to downregulate ERK activity, which upregulates viral DNA replication.IMPORTANCE Human parvovirus B19 (B19V) infection causes hematological disorders and is the leading cause of nonimmunological fetal hydrops during pregnancy. During infection, B19V expresses two structural proteins, VP1 and VP2, and three nonstructural proteins, NS1, 11-kDa, and 7.5-kDa. While NS1 is essential, 11-kDa plays an enhancing role in viral DNA replication. Here, we elucidated a mechanism underlying 11-kDa protein-regulated B19V DNA replication. 11-kDa is tightly associated with cellular growth factor receptor-bound protein 2 (Grb2) during infection. In vitro, 11-kDa interacts with Grb2 with high affinity through three proline-rich motifs, of which at least one is indispensable for the regulation of viral DNA replication. 11-kDa and Grb2 interaction disrupts extracellular signal-regulated kinase (ERK) signaling, which mediates upregulation of B19V replication. Thus, our study reveals a novel mechanism of how a parvoviral small nonstructural protein regulates viral DNA replication by interacting with a host protein that is predominately expressed in the cytoplasm.


Subject(s)
GRB2 Adaptor Protein/metabolism , Parvoviridae Infections/metabolism , Parvovirus B19, Human/physiology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Motifs , Binding Sites , DNA Replication , Humans , Molecular Weight , Mutation , Parvovirus B19, Human/metabolism , Phosphorylation , Proline/metabolism , Protein Binding , Virus Replication
14.
Article in English | MEDLINE | ID: mdl-30530599

ABSTRACT

Human parvovirus B19 (B19V), a member of the genus Erythroparvovirus of the family Parvoviridae, is a small nonenveloped virus that has a single-stranded DNA (ssDNA) genome of 5.6 kb with two inverted terminal repeats (ITRs). B19V infection often results in severe hematological disorders and fetal death in humans. B19V replication follows a model of rolling hairpin-dependent DNA replication, in which the large nonstructural protein NS1 introduces a site-specific single-strand nick in the viral DNA replication origins, which locate at the ITRs. NS1 executes endonuclease activity through the N-terminal origin-binding domain. Nicking of the viral replication origin is a pivotal step in rolling hairpin-dependent viral DNA replication. Here, we developed a fluorophore-based in vitro nicking assay of the replication origin using the origin-binding domain of NS1 and compared it with the radioactive in vitro nicking assay. We used both assays to screen a set of small-molecule compounds (n = 96) that have potential antinuclease activity. We found that the fluorophore-based in vitro nicking assay demonstrates sensitivity and specificity values as high as those of the radioactive assay. Among the 96 compounds, we identified 8 which have an inhibition of >80% at 10 µM in both the fluorophore-based and radioactive in vitro nicking assays. We further tested 3 compounds that have a flavonoid-like structure and an in vitro 50% inhibitory concentration that fell in the range of 1 to 3 µM. Importantly, they also exhibited inhibition of B19V DNA replication in UT7/Epo-S1 cells and ex vivo-expanded human erythroid progenitor cells.


Subject(s)
Antiviral Agents/pharmacology , DNA Replication/drug effects , Parvoviridae Infections/drug therapy , Parvovirus B19, Human/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Cell Line , DNA, Viral/genetics , Drug Development , Erythroid Precursor Cells , Humans , Parvoviridae Infections/virology , Virus Replication/genetics
15.
Ophthalmology ; 125(9): 1344-1353, 2018 09.
Article in English | MEDLINE | ID: mdl-29602567

ABSTRACT

PURPOSE: To determine host and pathogen factors predictive of outcomes in a large clinical cohort with keratoconjunctivitis. DESIGN: Retrospective analyses of the clinical and molecular data from a randomized, controlled, masked trial for auricloscene for keratoconjunctivitis (NVC-422 phase IIB, NovaBay; clinicaltrials.gov identifier, NCT01877694). PARTICIPANTS: Five hundred participants from United States, India, Brazil, and Sri Lanka with clinical diagnosis of keratoconjunctivitis and positive rapid test results for adenovirus. METHODS: Clinical signs and symptoms and bilateral conjunctival swabs were obtained on days 1, 3, 6, 11, and 18. Polymerase chain reaction (PCR) analysis was performed to detect and quantify adenovirus in all samples. Regression models were used to evaluate the association of various variables with keratoconjunctivitis outcomes. Time to resolution of each symptom or sign was assessed by adenoviral species with Cox regression. MAIN OUTCOME MEASURES: The difference in composite scores of clinical signs between days 1 and 18, mean visual acuity change between days 1 and 18, and time to resolution of each symptom or sign. RESULTS: Of 500 participants, 390 (78%) showed evidence of adenovirus by PCR. Among adenovirus-positive participants, adenovirus D species was most common (63% of total cases), but a total of 4 species and 21 different types of adenovirus were detected. Adenovirus D was associated with more severe signs and symptoms, a higher rate of subepithelial infiltrate development, and a slower decline in viral load compared with all other adenovirus species. The clinical courses of all patients with non-adenovirus D species infection and adenovirus-negative keratoconjunctivitis were similar. Mean change in visual acuity between days 1 and 18 was a gain of 1.9 letters; worse visual outcome was associated with older age. CONCLUSIONS: A substantial proportion of keratoconjunctivitis is not associated with a detectable adenovirus. The clinical course of those with adenovirus D keratoconjunctivitis is significantly more severe than those with non-adenovirus D species infections or adenovirus-negative keratoconjunctivitis; high viral load at presentation and non-United States origin of participants is associated with poorer clinical outcome.


Subject(s)
Adenoviridae Infections/diagnosis , Adenoviridae/genetics , DNA, Viral/analysis , Eye Infections, Viral/diagnosis , Keratoconjunctivitis/diagnosis , Adenoviridae Infections/epidemiology , Adenoviridae Infections/virology , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Child , Child, Preschool , Eye Infections, Viral/epidemiology , Eye Infections, Viral/virology , Female , Follow-Up Studies , Humans , Incidence , India/epidemiology , Infant , Keratoconjunctivitis/epidemiology , Keratoconjunctivitis/virology , Male , Middle Aged , Polymerase Chain Reaction , Retrospective Studies , Sri Lanka/epidemiology , United States/epidemiology , Young Adult
16.
J Virol ; 92(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29437973

ABSTRACT

Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis-acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein.IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral receptors and coreceptors on the cell surface but also on the intracellular host factors that support B19V replication. Our present study shows that B19V uses a host factor, RNA binding motif protein 38 (RBM38), for the processing of its pre-mRNA during virus replication. Specifically, RBM38 interacts with the intronic splicing enhancer 2 (ISE2) element of B19V pre-mRNA and promotes 11-kDa protein expression, thereby regulating the 11-kDa protein-mediated augmentation of B19V replication. The identification of this novel host-pathogen interaction will provide mechanistic insights into B19V replication and aid in finding new targets for anti-B19V therapeutics.


Subject(s)
DNA Replication/physiology , DNA, Viral/metabolism , Down-Regulation/physiology , Erythema Infectiosum/metabolism , Gene Expression Regulation, Viral/physiology , Parvovirus B19, Human/physiology , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/biosynthesis , Virus Replication/physiology , DNA, Viral/genetics , Erythema Infectiosum/genetics , Humans , RNA-Binding Proteins/genetics , Viral Nonstructural Proteins/genetics
17.
J Virol ; 92(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29237843

ABSTRACT

Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication.IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly associated with the replicating single-stranded DNA viral genome and played a critical role in viral DNA replication. In contrast, the DNA damage response-induced phosphorylated forms of RPA32 were dispensable for viral DNA replication.


Subject(s)
Cell Division , DNA Replication , Host-Pathogen Interactions , Parvoviridae Infections/virology , Parvovirus B19, Human/genetics , Parvovirus B19, Human/metabolism , Virus Replication , Bromodeoxyuridine/metabolism , CD36 Antigens/analysis , CD36 Antigens/metabolism , Cell Cycle , Cell Cycle Checkpoints , Cell Line , DNA Damage , DNA Polymerase III , DNA Polymerase beta , DNA Repair , DNA, Single-Stranded/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/virology , Fetal Death , Gene Expression Regulation, Viral/physiology , Genome, Viral , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Humans , Parvovirus B19, Human/pathogenicity , Phosphorylation , Protein Interaction Maps , Red-Cell Aplasia, Pure/virology , Replication Protein A/genetics , S Phase , Transcriptome , Viremia/virology
18.
PLoS Pathog ; 13(5): e1006370, 2017 May.
Article in English | MEDLINE | ID: mdl-28459842

ABSTRACT

Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.


Subject(s)
DNA Replication , Minichromosome Maintenance Proteins/metabolism , Parvovirus B19, Human/genetics , STAT5 Transcription Factor/metabolism , Virus Replication , Erythroid Precursor Cells/virology , Erythropoietin/genetics , Erythropoietin/metabolism , Humans , Minichromosome Maintenance Proteins/genetics , Parvovirus B19, Human/physiology , Phosphorylation , STAT5 Transcription Factor/genetics , Signal Transduction
19.
PLoS Pathog ; 13(3): e1006266, 2017 03.
Article in English | MEDLINE | ID: mdl-28264028

ABSTRACT

Human parvovirus B19 (B19V) infection of primary human erythroid progenitor cells (EPCs) arrests infected cells at both late S-phase and G2-phase, which contain 4N DNA. B19V infection induces a DNA damage response (DDR) that facilitates viral DNA replication but is dispensable for cell cycle arrest at G2-phase; however, a putative C-terminal transactivation domain (TAD2) within NS1 is responsible for G2-phase arrest. To fully understand the mechanism underlying B19V NS1-induced G2-phase arrest, we established two doxycycline-inducible B19V-permissive UT7/Epo-S1 cell lines that express NS1 or NS1mTAD2, and examined the function of the TAD2 domain during G2-phase arrest. The results confirm that the NS1 TAD2 domain plays a pivotal role in NS1-induced G2-phase arrest. Mechanistically, NS1 transactivated cellular gene expression through the TAD2 domain, which was itself responsible for ATR (ataxia-telangiectasia mutated and Rad3-related) activation. Activated ATR phosphorylated CDC25C at serine 216, which in turn inactivated the cyclin B/CDK1 complex without affecting nuclear import of the complex. Importantly, we found that the ATR-CHK1-CDC25C-CDK1 pathway was activated during B19V infection of EPCs, and that ATR activation played an important role in B19V infection-induced G2-phase arrest.


Subject(s)
G2 Phase Cell Cycle Checkpoints/physiology , Parvoviridae Infections/metabolism , Signal Transduction/physiology , Viral Nonstructural Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Blotting, Western , CDC2 Protein Kinase , Cell Line , Cyclin-Dependent Kinases/metabolism , Erythroid Precursor Cells/virology , Flow Cytometry , Humans , Immunoprecipitation , Oligonucleotide Array Sequence Analysis , Parvovirus B19, Human , cdc25 Phosphatases/metabolism
20.
J Virol ; 87(23): 12766-75, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24049177

ABSTRACT

Human parvovirus B19 (B19V) infection has a unique tropism to human erythroid progenitor cells (EPCs) in human bone marrow and the fetal liver. It has been reported that both B19V infection and expression of the large nonstructural protein NS1 arrested EPCs at a cell cycle status with a 4 N DNA content, which was previously claimed to be "G2/M arrest." However, a B19V mutant infectious DNA (M20(mTAD2)) replicated well in B19V-semipermissive UT7/Epo-S1 cells but did not induce G2/M arrest (S. Lou, Y. Luo, F. Cheng, Q. Huang, W. Shen, S. Kleiboeker, J. F. Tisdale, Z. Liu, and J. Qiu, J. Virol. 86:10748-10758, 2012). To further characterize cell cycle arrest during B19V infection of EPCs, we analyzed the cell cycle change using 5-bromo-2'-deoxyuridine (BrdU) pulse-labeling and DAPI (4',6-diamidino-2-phenylindole) staining, which precisely establishes the cell cycle pattern based on both cellular DNA replication and nuclear DNA content. We found that although both B19V NS1 transduction and infection immediately arrested cells at a status of 4 N DNA content, B19V-infected 4 N cells still incorporated BrdU, indicating active DNA synthesis. Notably, the BrdU incorporation was caused neither by viral DNA replication nor by cellular DNA repair that could be initiated by B19V infection-induced cellular DNA damage. Moreover, several S phase regulators were abundantly expressed and colocalized within the B19V replication centers. More importantly, replication of the B19V wild-type infectious DNA, as well as the M20(mTAD2) mutant, arrested cells at S phase. Taken together, our results confirmed that B19V infection triggers late S phase arrest, which presumably provides cellular S phase factors for viral DNA replication.


Subject(s)
DNA Replication , DNA, Viral/genetics , Erythema Infectiosum/physiopathology , Erythroid Precursor Cells/cytology , Parvovirus B19, Human/genetics , S Phase Cell Cycle Checkpoints , Virus Replication , Cell Line , Erythema Infectiosum/virology , Erythroid Precursor Cells/virology , Humans , Parvovirus B19, Human/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...