Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 10(7): 1406-1414, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39071055

ABSTRACT

The oxidation state ( OS ) formalism is a much-appreciated good in chemistry, receiving wide application. However, like all formalisms, limitations are inescapable, some of which have been recently explored. Providing a broader context, we discuss the OS and its interpretation from a computational perspective for transition metal (TM) complexes. We define a broadly applicable and easy-to-use procedure to derive OS s based on quantum chemical calculations, via the use of localized orbitals, dubbed the Intrinsic OS . Applying this approach to a cobalt complex in five OS s, isolated by Hunter and co-workers (Inorg. Chem.2021, 60, 17445), we find that the calculated Intrinsic OS matches the formal OS , consistent with the experimental characterization. Through analysis of the delocalized orbitals, the ligand field of the Co(III) complex is found to be "inverted", despite every cobalt-ligand bond being classically dative from the localized perspective-a bonding scenario very similar to that of [Cu(CF3)4]-. This is not atypical but rather a natural consequence of these metals bonding in the high-valent region, and we propose a more restrictive definition of (locally) inverted bonding. Additionally, two bonding descriptors within the Intrinsic Bonding Orbital (IBO) framework (σ-gain and π-loss) are introduced, which enable facile quantification of electron-sharing covalency across a broad range of TM complexes.

2.
Angew Chem Int Ed Engl ; : e202409315, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072869

ABSTRACT

In recent years, the electronic structures of organocuprates in general and the complex [Cu(CF3)4]- in particular have attracted significant interest. A possible key indicator in this context is the reactivity of these species. Nonetheless, this aspect has received only limited attention. Here, we systematically study the series of tetra-alkyl cuprates [MenCu(CF3)4-n]- and their unimolecular reactivity in the gas phase, which includes concerted formal reductive eliminations as well as radical losses. Through computational studies, we characterize the electronic structures of the complexes and show how these are connected to their reactivity. We find that all [MenCu(CF3)4-n]- ions feature inverted ligand fields and that the distinct reactivity patterns of the individual complexes arise from the interplay of different effects.

3.
Angew Chem Int Ed Engl ; 63(14): e202318916, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38324462

ABSTRACT

We report the preparation and characterization of the dinuclear AuII hydroxide complex AuII 2(L)2(OH)2 (L=N,N'-bis (2,6-dimethyl) phenylformamidinate) and study its reactivity towards weak X-H bonds. Through the interplay of kinetic analysis and computational studies, we demonstrate that the oxidation of cyclohexadiene follows a concerted proton-coupled electron transfer (cPCET) mechanism, a rare type of reactivity for Au complexes. We find that the Au-Au σ-bond undergoes polarization in the PCET event leading to an adjustment of oxidation levels for both Au centers prior to C(sp3)-H bond cleavage. We thus describe the oxidation event as a valence tautomerism-induced PCET where the basicity of one reduced Au-OH unit provides a proton acceptor and the second more oxidized Au center serves as an electron acceptor. The coordination of these events allows for unprecedented radical-type reactivity by a closed shell AuII complex.

4.
J Am Chem Soc ; 146(6): 3796-3804, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38299607

ABSTRACT

S = 2 FeIV═O centers generated in the active sites of nonheme iron oxygenases cleave substrate C-H bonds at rates significantly faster than most known synthetic FeIV═O complexes. Unlike the majority of the latter, which are S = 1 complexes, [FeIV(O)(tris(2-quinolylmethyl)amine)(MeCN)]2+ (3) is a rare example of a synthetic S = 2 FeIV═O complex that cleaves C-H bonds 1000-fold faster than the related [FeIV(O)(tris(pyridyl-2-methyl)amine)(MeCN)]2+ complex (0). To rationalize this significant difference, a systematic comparison of properties has been carried out on 0 and 3 as well as related complexes 1 and 2 with mixed pyridine (Py)/quinoline (Q) ligation. Interestingly, 2 with a 2-Q-1-Py donor combination cleaves C-H bonds at 233 K with rates approaching those of 3, even though Mössbauer analysis reveals 2 to be S = 1 at 4 K. At 233 K however, 2 becomes S = 2, as shown by its 1H NMR spectrum. These results demonstrate a unique temperature-dependent spin-state transition from triplet to quintet in oxoiron(IV) chemistry that gives rise to the high C-H bond cleaving reactivity observed for 2.

SELECTION OF CITATIONS
SEARCH DETAIL