Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(7): 107407, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796065

ABSTRACT

Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/ß-catenin pathway, which promotes the degradation of ß-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/ß-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of ß-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/ß-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate ß-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/ß KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-ß-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/ß-catenin pathway at the level of ß-catenin and Axin.


Subject(s)
Casein Kinase Ialpha , Wnt Signaling Pathway , beta Catenin , Humans , Alternative Splicing , beta Catenin/metabolism , beta Catenin/genetics , Casein Kinase Ialpha/metabolism , Casein Kinase Ialpha/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , HEK293 Cells , Phosphorylation , Wnt3A Protein/metabolism , Wnt3A Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL