Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters











Publication year range
1.
ACS Nano ; 18(29): 19110-19123, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38980975

ABSTRACT

We demonstrate nearly a microsecond of spin coherence in Er3+ ions doped in cerium dioxide nanocrystal hosts, despite a large gyromagnetic ratio and nanometric proximity of the spin defect to the nanocrystal surface. The long spin coherence is enabled by reducing the dopant density below the instantaneous diffusion limit in a nuclear spin-free host material, reaching the limit of a single erbium spin defect per nanocrystal. We observe a large Orbach energy in a highly symmetric cubic site, further protecting the coherence in a qubit that would otherwise rapidly decohere. Spatially correlated electron spectroscopy measurements reveal the presence of Ce3+ at the nanocrystal surface, which likely acts as extraneous paramagnetic spin noise. Even with these factors, defect-embedded nanocrystal hosts show tremendous promise for quantum sensing and quantum communication applications, with multiple avenues, including core-shell fabrication, redox tuning of oxygen vacancies, and organic surfactant modification, available to further enhance their spin coherence and functionality in the future.

2.
Chembiochem ; : e202400311, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037826

ABSTRACT

Electron imaging of biological samples stained with heavy metals has enabled visualization of subcellular structures critical in chemical-, structural-, and neuro-biology. In particular, osmium tetroxide OsO4 has been widely adopted for selective lipid imaging. Despite the ubiquity of its use, the osmium speciation in lipid membranes and the process for contrast generation in electron microscopy (EM) have continued to be open questions, limiting efforts to improve staining protocols and therefore high-resolution nanoscale imaging of biological samples. Following our recent success using photoemission electron microscopy (PEEM) to image mouse brain tissues with synaptic resolution, we have used PEEM to determine the nanoscale electronic structure of Os-stained biological samples. Os(IV), in the form of OsO2, generates nanoaggregates in lipid membranes, leading to a strong spatial variation in the electronic structure and electron density of states. OsO2 has a metallic electronic structure that drastically increases the electron density of states near the Fermi level. Depositing metallic OsO2 in lipid membranes allows for strongly enhanced EM signals and conductivity of biological materials. The identification of the chemical species and understanding of the membrane contrast mechanism of Os-stained biological specimens provides a new opportunity for the development of staining protocols for high-resolution, high-contrast EM imaging.

3.
ACS Energy Lett ; 9(1): 201-208, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38230374

ABSTRACT

Aqueous zinc-ion batteries (ZIBs) employing zinc metal anodes are gaining traction as batteries for moderate to long duration energy storage at scale. However, corrosion of the zinc metal anode through reaction with water limits battery efficiency. Much research in the past few years has focused on additives that decrease hydrogen evolution, but the precise mechanisms by which this takes place are often understudied and remain unclear. In this work, we study the role of an acetonitrile antisolvent additive in improving the performance of aqueous ZnSO4 electrolytes using experimental and computational techniques. We demonstrate that acetonitrile actively modifies the interfacial chemistry during Zn metal plating, which results in improved performance of acetonitrile-containing electrolytes. Collectively, this work demonstrates the effectiveness of solvent additive systems in battery performance and durability and provides a new framework for future efforts to optimize ion transport and performance in ZIBs.

4.
J Am Chem Soc ; 146(6): 3640-3645, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38294831

ABSTRACT

We report the discovery of a novel form of Ruddlesden-Popper (RP) nickelate that stands as the first example of long-range, coherent polymorphism in this class of inorganic solids. Rather than the well-known, uniform stacking of perovskite blocks ubiquitously found in RP phases, this newly discovered polymorph of the bilayer RP phase La3Ni2O7 adopts a novel stacking sequence in which single-layer and trilayer blocks of NiO6 octahedra alternate in a "1313" sequence. Crystals of this new polymorph are described in space group Cmmm, although we note evidence for a competing Imam variant. Transport measurements at ambient pressure reveal metallic character with evidence of a charge density wave transition with an onset at T ≈ 134 K. The discovery of such polymorphism could reverberate to the expansive range of science and applications that rely on RP materials, particularly the recently reported signatures of superconductivity in bilayer La3Ni2O7 with Tc as high as 80 K above 14 GPa.

5.
ACS Appl Mater Interfaces ; 15(41): 48072-48084, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37805993

ABSTRACT

Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode-electrolyte interface of multivalent magnesium batteries. In this work, the isolated intrinsic reactivities of prominent chemical species present in magnesium bis(trifluoromethanesulfonimide) (Mg(TFSI)2) in diglyme (G2) electrolytes, including ionic (TFSI-, [Mg(TFSI)]+, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+) as well as neutral molecules (G2) on a well-defined magnesium vanadate cathode (MgV2O4) surface, have been studied using a combination of first-principles calculations and multimodal spectroscopy analysis. Our calculations show that nonsolvated [Mg(TFSI)]+ is the strongest adsorbing species on the MgV2O4 surface compared with all other ions while partially solvated [Mg(TFSI):G2]+ is the most reactive species. The cleavage of C-S bonds in TFSI- to form CF3- is predicted to be the most desired pathway for all ionic species, which is followed by the cleavage of C-O bonds of G2 to yield CH3+ or OCH3- species. The strong stabilization and electron transfer between ionic electrolyte species and MgV2O4 is found to significantly favor these decomposition reactions on the surface compared with intrinsic gas-phase dissociation. Experimentally, we used state-of-the-art ion soft landing to selectively deposit mass-selected TFSI-, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+ on a MgV2O4 thin film to form a well-defined electrolyte-MgV2O4 interface. Analysis of the soft-landed interface using X-ray photoelectron, X-ray absorption near-edge structure, electron energy-loss spectroscopies, as well as transmission electron microscopy confirmed the presence of decomposition species (e.g., MgFx, carbonates) and the higher amount of MgFx with [Mg(TFSI):G2]+ formed in the interfacial region, which corroborates the theoretical observation. Overall, these results indicate that Mg2+ desolvation results in electrolyte decomposition facilitated by surface adsorption, charge transfer, and the formation of passivating fluorides on the MgV2O4 cathode surface. This work provides the first evidence of the primary mechanisms leading to electrolyte decomposition at high-voltage oxide surfaces in multivalent batteries and suggests that the design of new, anodically stable electrolytes must target systems that facilitate cation desolvation.

7.
Microsc Microanal ; 29(Supplement_1): 1377, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613593
8.
10.
Microsc Microanal ; 29(Supplement_1): 1784-1785, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613902
12.
Nat Chem ; 15(12): 1722-1729, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37537297

ABSTRACT

Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) combine the electronic and mechanical properties of 2D inorganic crystals with chemically modifiable surfaces, which provides an ideal platform for both fundamental and applied studies of interfaces. Good progress has been achieved in the functionalization of MXenes with small inorganic ligands, but relatively little work has been reported on the covalent bonding of various organic groups to MXene surfaces. Here we synthesize a family of hybrid MXenes (h-MXenes) that incorporate amido- and imido-bonding between organic and inorganic parts by reacting halogen-terminated MXenes with deprotonated organic amines. The resulting hybrid structures unite tailorability of organic molecules with electronic connectivity and other properties of inorganic 2D materials. Describing the structure of h-MXene necessitates the integration of concepts from coordination chemistry, self-assembled monolayers and surface science. The optical properties of h-MXenes reveal coherent coupling between the organic and inorganic constituents. h-MXenes also exhibit superior stability against hydrolysis.

13.
ACS Biomater Sci Eng ; 9(8): 4686-4697, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37450411

ABSTRACT

Streptococcus mutans is one of the key etiological factors in tooth-borne biofilm development that leads to dental caries in the presence of fermentable sugars. We previously reported on the ability of acid-stabilized nanoceria (CeO2-NP) produced by the hydrolysis of ceric salts to limit biofilm adherence of S. mutans via non-bactericidal mechanism(s). Herein, we report a chondroitin sulfate A (CSA) formulation (CeO2-NP-CSA) comprising nanoceria aggregates that promotes resistance to bulk precipitation under a range of conditions with retention of the biofilm-inhibiting activity, allowing for a more thorough mechanistic study of its bioactivity. The principal mechanism of reduced in vitro biofilm adherence of S. mutans by CeO2-NP-CSA is the production of nonadherent cell clusters. Additionally, dose-dependent in vitro human cell toxicity studies demonstrated no additional toxicity beyond that of equimolar doses of sodium fluoride, currently utilized in many oral health products. This study represents a unique approach and use of a nanoceria aggregate formulation with implications for promoting oral health and dental caries prevention as an adjunctive treatment.


Subject(s)
Dental Caries , Streptococcus mutans , Humans , Dental Caries/prevention & control , Biofilms , Cluster Analysis
14.
Nat Commun ; 14(1): 3067, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37244907

ABSTRACT

Two major challenges hinder the advance of aqueous zinc metal batteries for sustainable stationary storage: (1) achieving predominant Zn-ion (de)intercalation at the oxide cathode by suppressing adventitious proton co-intercalation and dissolution, and (2) simultaneously overcoming Zn dendrite growth at the anode that triggers parasitic electrolyte reactions. Here, we reveal the competition between Zn2+ vs proton intercalation chemistry of a typical oxide cathode using ex-situ/operando techniques, and alleviate side reactions by developing a cost-effective and non-flammable hybrid eutectic electrolyte. A fully hydrated Zn2+ solvation structure facilitates fast charge transfer at the solid/electrolyte interface, enabling dendrite-free Zn plating/stripping with a remarkably high average coulombic efficiency of 99.8% at commercially relevant areal capacities of 4 mAh cm-2 and function up to 1600 h at 8 mAh cm-2. By concurrently stabilizing Zn redox at both electrodes, we achieve a new benchmark in Zn-ion battery performance of 4 mAh cm-2 anode-free cells that retain 85% capacity over 100 cycles at 25 °C. Using this eutectic-design electrolyte, Zn | |Iodine full cells are further realized with 86% capacity retention over 2500 cycles. The approach represents a new avenue for long-duration energy storage.

15.
Science ; 379(6638): 1242-1247, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36952427

ABSTRACT

Two-dimensional transition-metal carbides and nitrides (MXenes) are a large family of materials actively studied for various applications, especially in the field of energy storage. MXenes are commonly synthesized by etching the layered ternary compounds, called MAX phases. We demonstrate a direct synthetic route for scalable and atom-economic synthesis of MXenes, including compounds that have not been synthesized from MAX phases, by the reactions of metals and metal halides with graphite, methane, or nitrogen. The direct synthesis enables chemical vapor deposition growth of MXene carpets and complex spherulite-like morphologies that form through buckling and release of MXene carpet to expose fresh surface for further reaction. The directly synthesized MXenes showed excellent energy storage capacity for lithium-ion intercalation.

16.
Small ; 19(16): e2205977, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36651114

ABSTRACT

Identifying point defects and other structural anomalies using scanning transmission electron microscopy (STEM) is important to understand a material's properties caused by the disruption of the regular pattern of crystal lattice. Due to improvements in instrumentation stability and electron optics, atomic-resolution images with a field of view of several hundred nanometers can now be routinely acquired at 1-10 Hz frame rates and such data, which often contain thousands of atomic columns, need to be analyzed. To date, image analysis is performed largely manually, but recent developments in computer vision (CV) and machine learning (ML) now enable automated analysis of atomic structures and associated defects. Here, the authors report on how a Convolutional Variational Autoencoder (CVAE) can be utilized to detect structural anomalies in atomic-resolution STEM images. Specifically, the training set is limited to perfect crystal images , and the performance of a CVAE in differentiating between single-crystal bulk data or point defects is demonstrated. It is found that the CVAE can reproduce the perfect crystal data but not the defect input data. The disagreesments between the CVAE-predicted data for defects allows for a clear and automatic distinction and differentiation of several point defect types.

17.
Nano Lett ; 22(23): 9470-9476, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36455210

ABSTRACT

Materials for studying biological interactions and for alternative energy applications are continuously under development. Semiconductor quantum dots are a major part of this landscape due to their tunable optoelectronic properties. Size-dependent quantum confinement effects have been utilized to create materials with tunable bandgaps and Auger recombination rates. Other mechanisms of electronic structural control are under investigation as not all of a material's characteristics are affected by quantum confinement. Demonstrated here is a new structure-property concept that imparts the ability to spatially localize electrons or holes within a core/shell heterostructure by tuning the charge carrier's kinetic energy on a parabolic potential energy surface. This charge carrier separation results in extended radiative lifetimes and in continuous emission at the single-nanoparticle level. These properties enable new applications for optics, facilitate novel approaches such as time-gated single-particle imaging, and create inroads for the development of other new advanced materials.


Subject(s)
Nanoparticles , Quantum Dots , Quantum Dots/chemistry , Nanoparticles/chemistry , Semiconductors , Electrons , Electronics
18.
ACS Appl Energy Mater ; 5(10): 11964-11969, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36311467

ABSTRACT

Magnesium batteries have attracted great attention as an alternative to Li-ion batteries but still suffer from limited choice of positive electrode materials. V2O5 exhibits high theoretical capacities, but previous studies have been mostly limited to α-V2O5. Herein, we report on the ß-V2O5 polymorph as a Mg intercalation electrode. The structural changes associated with the Mg2+ (de-) intercalation were analyzed by a combination of several characterization techniques: in situ high resolution X-ray diffraction, scanning transmission electron microscopy, electron energy-loss spectroscopy, and X-ray absorption spectroscopy. The reversible capacity reached 361 mAh g-1, the highest value found at room temperature for V2O5 polymorphs.

19.
Small ; 18(19): e2102960, 2022 May.
Article in English | MEDLINE | ID: mdl-35384282

ABSTRACT

To fully leverage the power of image simulation to corroborate and explain patterns and structures in atomic resolution microscopy, an initial correspondence between the simulation and experimental image must be established at the outset of further high accuracy simulations or calculations. Furthermore, if simulation is to be used in context of highly automated processes or high-throughput optimization, the process of finding this correspondence itself must be automated. In this work, "ingrained," an open-source automation framework which solves for this correspondence and fuses atomic resolution image simulations into the experimental images to which they correspond, is introduced. Herein, the overall "ingrained" workflow, focusing on its application to interface structure approximations, and the development of an experimentally rationalized forward model for scanning tunneling microscopy simulation are described.

20.
Nano Lett ; 22(6): 2228-2235, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35235332

ABSTRACT

Calcium-ion batteries (CIBs) are a promising alternative to lithium-ion batteries (LIBs) due to the low redox potential of calcium metal and high abundance of calcium compounds. Due to its layered structure, α-MoO3 is regarded as a promising cathode host lattice. While studies have reported that α-MoO3 can reversibly intercalate Ca ions, limited electrochemical activity has been noted, and its reaction mechanism remains unclear. Here, we re-examine Ca insertion into α-MoO3 nanoparticles with a goal to improve reaction kinetics and clarify the storage mechanism. The α-MoO3 electrodes demonstrated a specific capacity of 165 mA h g-1 centered near 2.7 V vs Ca2+/Ca, stable long-term cycling, and good rate performance at room temperature. This work demonstrates that, under the correct conditions, layered oxides can be a promising host material for CIBs and renews prospects for CIBs.


Subject(s)
Calcium , Nanoparticles , Electrodes , Ions , Lithium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL