Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 454
Filter
1.
Diabetes ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967999

ABSTRACT

CD8+ T cells are perceived to play a major role in the pathogenesis of type 1 diabetes (T1D). In this study, we characterized the function and phenotype of circulating CD8+ memory T cells in samples from individuals at different stages of T1D progression using flow cytometry and single-cell multiomics. We observed two distinct CD8+ T-cell signatures during progression of T1D within the highly differentiated CD27-CD8+ memory T cell subset. A proinflammatory signature, with an increased frequency of IFN-γ+TNF-α+ CD27-CD8+ memory T cells, was observed in children with newly diagnosed T1D (stage 3) and correlated with the level of dysglycemia at diagnosis. In contrast, a co-inhibitory signature, with an increased frequency of KLRG1+TIGIT+ CD27-CD8+ memory T cells, was observed in islet autoantibody-positive children who later progressed to T1D (stage 1). No alterations within CD27-CD8+ memory T cells were observed in adults with established T1D or in children during the initial seroconversion to islet autoantibody positivity. Single-cell multiomics analyses suggested that CD27-CD8+ T cells expressing the IFNG+TNF+ proinflammatory signature may be distinct from those expressing the KLRG1+TIGIT+ co-inhibitory signature at the single-cell level. Collectively, our findings suggest that distinct blood CD8+ T-cell signatures could be employed as potential biomarkers of T1D progression.

2.
Diabetes Metab Res Rev ; 40(5): e3833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961656

ABSTRACT

AIMS: Heterogeneity in the rate of ß-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis. METHODS: We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in ß-cell mass measured as fasting C-peptide. RESULTS: Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in ß-cell function. The second signature was related to translation and viral infection was inversely associated with change in ß-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid ß-cell decline. CONCLUSIONS: Features that differ between individuals with slow and rapid decline in ß-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/metabolism , Female , Male , Adult , Disease Progression , Biomarkers/analysis , Follow-Up Studies , Adolescent , Young Adult , Prognosis , Proteomics , C-Peptide/analysis , C-Peptide/blood , Child , Middle Aged , Genomics , Multiomics
3.
J Nutr ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906178

ABSTRACT

BACKGROUND: The Trial to Reduce IDDM in the Genetically at Risk (TRIGR) (NCT00179777) found no difference type 1 diabetes risk between hydrolyzed and regular infant formula. However, cow milk consumption during childhood is consistently linked to type 1 diabetes risk in prospective cohort studies. OBJECTIVES: Our primary aim was to study whether humoral immune responses to cow milk and cow milk consumption are associated with type 1 diabetes in TRIGR children. METHODS: TRIGR comprised 2159 children with genetic susceptibility to type 1 diabetes born between 2002 and 2007 in 15 countries. Children were randomly assigned into groups receiving extensively hydrolyzed casein or a regular cow milk formula and followed up until age 10 y. Type 1 diabetes-related autoantibodies and antibodies to cow milk proteins were analyzed. Infant formula intake was measured by structured dietary interviews and milk consumption with a food frequency questionnaire. Associations of milk antibodies and milk consumption with risk to develop type 1 diabetes were analyzed using Cox survival model. RESULTS: Cow milk antibody concentrations both in cord blood [hazards ratio (HR) for islet autoimmunity: 1.30; 95% CI: 1.05, 1.61; HR for type 1 diabetes: 1.32; 95% CI: 1.02, 1.71] and longitudinally from birth to 3 years (HR for islet autoimmunity: 1.39; 95% CI: 1.07, 1.81; HR for type 1 diabetes: 1.43; 95% CI: 1.04, 1.96) were associated with increased risk of developing type 1 diabetes. The amount of regular infant formula was associated with reduced islet autoimmunity risk in the regular infant formula group (HR: 0.92; 95% CI: 0.85, 0.99). Furthermore, frequent liquid milk consumption after infancy was associated with increased risk of islet autoimmunity or type 1 diabetes. CONCLUSIONS: Elevated cow milk antibody concentrations and high consumption of liquid milk after infancy are related to type 1 diabetes development in children with an increased genetic susceptibility to type 1 diabetes. Enhanced antibody concentrations to cow milk may provide a biomarker of immune system prone to develop islet autoimmunity. This trial was registered at clinicaltrials.gov as NCT00179777.

4.
HLA ; 103(6): e15548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887913

ABSTRACT

The HLA region, especially HLA class I and II genes, which encode molecules for antigen presentation to T cells, plays a major role in the predisposition to autoimmune disorders. To clarify the mechanisms behind this association, we examined genome-wide DNA methylation by microarrays to cover over 850,000 CpG sites in the CD4+ T cells and CD19+ B cells of healthy subjects homozygous either for DRB1*15-DQA1*01-DQB1*06:02 (DR2-DQ6, n = 14), associated with a strongly decreased T1D risk, DRB1*03-DQA1*05-DQB1*02 (DR3-DQ2, n = 19), or DRB1*04:01-DQA1*03-DQB1*03:02 (DR4-DQ8, n = 17), associated with a moderately increased T1D risk. In total, we discovered 14 differentially methylated CpG probes, of which 10 were located in the HLA region and six in the HLA-DRB1 locus. The main differences were between the protective genotype DR2-DQ6 and the risk genotypes DR3-DQ2 and DR4-DQ8, where the DR2-DQ6 group was hypomethylated compared to the other groups in all but four of the differentially methylated probes. The differences between the risk genotypes DR3-DQ2 and DR4-DQ8 were small. Our results indicate that HLA variants have few systemic effects on methylation and that their effect on autoimmunity is conveyed directly by HLA molecules, possibly by differences in expression levels or function.


Subject(s)
CpG Islands , DNA Methylation , Diabetes Mellitus, Type 1 , Genetic Predisposition to Disease , Genotype , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Female , Male , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Alleles
5.
iScience ; 27(6): 110048, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38883825

ABSTRACT

In-utero and dietary factors make important contributions toward health and development in early childhood. In this respect, serum proteomics of maturing infants can provide insights into studies of childhood diseases, which together with perinatal proteomes could reveal further biological perspectives. Accordingly, to determine differences between feeding groups and changes in infancy, serum proteomics analyses of mother-infant dyads with HLA-conferred susceptibility to type 1 diabetes (n = 22), weaned to either an extensively hydrolyzed or regular cow's milk formula, were made. The LC-MS/MS analyses included samples from the beginning of third trimester, the time of delivery, 3 months postpartum, cord blood, and samples from the infants at 3, 6, 9, and 12 months. Correlations between ranked protein intensities were detected within the dyads, together with perinatal and age-related changes. Comparison with intestinal permeability data revealed a number of significant correlations, which could merit further consideration in this context.

6.
Clin Nutr ESPEN ; 62: 22-27, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901945

ABSTRACT

BACKGROUND & AIMS: Maternal gluten intake in relation to child's risk of type 1 diabetes has been studied in few prospective studies considering the diet during pregnancy but none during lactation. Our aim was to study whether gluten, cereals, or dietary fiber in maternal diet during pregnancy and lactation is associated with the risk of islet autoimmunity or type 1 diabetes in the offspring. METHODS: We included 4943 children with genetic susceptibility to type 1 diabetes from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study, born between 1996 and 2004. Maternal intake of gluten, different types of cereals, and dietary fiber were derived from a semi-quantitative validated food frequency questionnaire covering the eighth month of pregnancy and the third month of lactation. Children were monitored for islet autoantibodies up to age of 15 years and type 1 diabetes until year 2017. Risk of islet autoimmunity and clinical type 1 diabetes were estimated using Cox regression model, adjusted for energy intake, child's sex, HLA genotype, and familial diabetes. RESULTS: Altogether 312 children (6.4%) developed islet autoimmunity at median age of 3.5 (IQR 1.7, 6.6) years and 178 children (3.6%) developed type 1 diabetes at median age of 7.1 (IQR 4.3, 10.6) years. Gluten intake during pregnancy was not associated with islet autoimmunity (HR 0.96; 95% CI 0.68, 1.35), per 1 g/MJ increase in intake nor type 1 diabetes (HR 0.96; 95% CI 0.62, 1.50) in the offspring. Higher barley consumption during lactation was associated with increased risk of type 1 diabetes (HR 3.25; 95% CI 1.21, 8.70) per 1 g/MJ increase in intake. Maternal intake of other cereals or dietary fiber was not associated with the offspring outcomes. CONCLUSIONS: We observed no association between maternal intake of gluten, most consumed cereals, or dietary fiber during pregnancy or lactation and the risk of islet autoimmunity or type 1 diabetes in children from a high-risk population.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1 , Dietary Fiber , Edible Grain , Glutens , Lactation , Humans , Diabetes Mellitus, Type 1/immunology , Female , Pregnancy , Glutens/adverse effects , Child , Child, Preschool , Male , Finland , Infant , Risk Factors , Diet , Adolescent , Maternal Nutritional Physiological Phenomena , Prospective Studies , Islets of Langerhans/immunology , Prenatal Exposure Delayed Effects , Adult
7.
Diabetologia ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832971

ABSTRACT

AIMS/HYPOTHESIS: The gut microbiome is implicated in the disease process leading to clinical type 1 diabetes, but less is known about potential changes in the gut microbiome after the diagnosis of type 1 diabetes and implications in glucose homeostasis. We aimed to analyse potential associations between the gut microbiome composition and clinical and laboratory data during a 2 year follow-up of people with newly diagnosed type 1 diabetes, recruited to the Innovative approaches to understanding and arresting type 1 diabetes (INNODIA) study. In addition, we analysed the microbiome composition in initially unaffected family members, who progressed to clinical type 1 diabetes during or after their follow-up for 4 years. METHODS: We characterised the gut microbiome composition of 98 individuals with newly diagnosed type 1 diabetes (ND cohort) and 194 autoantibody-positive unaffected family members (UFM cohort), representing a subgroup of the INNODIA Natural History Study, using metagenomic sequencing. Participants from the ND cohort attended study visits within 6 weeks from the diagnosis and 3, 6, 12 and 24 months later for stool sample collection and laboratory tests (HbA1c, C-peptide, diabetes-associated autoantibodies). Participants from the UFM cohort were assessed at baseline and 6, 12, 18, 24 and 36 months later. RESULTS: We observed a longitudinal increase in 21 bacterial species in the ND cohort but not in the UFM cohort. The relative abundance of Faecalibacterium prausnitzii was inversely associated with the HbA1c levels at diagnosis (p=0.0019). The rate of the subsequent disease progression in the ND cohort, as assessed by change in HbA1c, C-peptide levels and insulin dose, was associated with the abundance of several bacterial species. Individuals with rapid decrease in C-peptide levels in the ND cohort had the lowest gut microbiome diversity. Nineteen individuals who were diagnosed with type 1 diabetes in the UFM cohort had increased abundance of Sutterella sp. KLE1602 compared with the undiagnosed UFM individuals (p=1.2 × 10-4). CONCLUSIONS/INTERPRETATION: Our data revealed associations between the gut microbiome composition and the disease progression in individuals with recent-onset type 1 diabetes. Future mechanistic studies as well as animal studies and human trials are needed to further validate the significance and causality of these associations.

8.
J Nutr ; 154(7): 2244-2254, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795745

ABSTRACT

BACKGROUND: Gut dysbiosis and increased intestinal permeability have been reported to precede type 1 diabetes-related autoimmunity. The role of gut inflammation in autoimmunity is not understood. OBJECTIVES: This study aimed to assess whether gut inflammation markers are associated with risk of islet autoimmunity and whether diet is associated with gut inflammation markers. METHODS: A nested case-control sample of 75 case children with islet autoimmunity and 88 control children was acquired from the Finnish Type 1 Diabetes Prediction and Prevention cohort. Diet was assessed with 3-d food records, and calprotectin and human ß-defensin-2 (HBD-2) were analyzed from stool samples at 6 and 12 mo of age. Conditional logistic regression analysis was used in a matched case-control setting to assess risk of autoimmunity. Analysis of variance, independent samples t test, and a general linear model were used in secondary analyses to test associations of background characteristics and dietary factors with inflammation markers. RESULTS: In unadjusted analyses, calprotectin was not associated with risk of islet autoimmunity, whereas HBD-2 in the middle (odds ratio [OR]: 3.23; 95% confidence interval [CI]: 1.03, 10.08) or highest tertile (OR: 3.02; 95% CI: 1.05, 8.69) in comparison to the lowest at 12 mo of age showed borderline association (P-trend = 0.063) with higher risk of islet autoimmunity. Excluding children with cow milk allergy in sensitivity analyses strengthened the association of HBD-2 with islet autoimmunity, whereas adjusting for dietary factors and maternal education weakened it. At age 12 mo, higher fat intake was associated with higher HBD-2 (ß: 0.219; 95% CI: 0.110, 0.328) and higher intake of dietary fiber (ß: -0.294; 95% CI: -0.510, -0.078), magnesium (ß: -0.036; 95% CI: -0.059, -0.014), and potassium (ß: -0.003; 95% CI: -0.005, -0.001) with lower HBD-2. CONCLUSIONS: Higher HBD-2 in infancy may be associated with higher risk of islet autoimmunity. Dietary factors play a role in gut inflammatory status.


Subject(s)
Autoimmunity , Biomarkers , Diabetes Mellitus, Type 1 , Diet , Islets of Langerhans , Leukocyte L1 Antigen Complex , beta-Defensins , Humans , Case-Control Studies , Finland , Female , Male , Leukocyte L1 Antigen Complex/analysis , Diabetes Mellitus, Type 1/immunology , Infant , Islets of Langerhans/immunology , Risk Factors , Inflammation , Feces/chemistry
9.
Nat Commun ; 15(1): 3810, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714671

ABSTRACT

Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Glutamate Decarboxylase , Immunity, Cellular , Humans , Diabetes Mellitus, Type 1/immunology , Autoantibodies/immunology , Autoantibodies/blood , Child , Female , Male , Glutamate Decarboxylase/immunology , Child, Preschool , Adolescent , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Insulin/immunology , Islets of Langerhans/immunology , Disease Progression
10.
Lancet Microbe ; 5(7): 689-696, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679040

ABSTRACT

BACKGROUND: Group B streptococcus is a major cause of neonatal disease. Natural history studies have linked maternally transferred anti-group B streptococcus capsular polysaccharide antibodies with protection against infant group B streptococcus disease. Previous studies of capsular polysaccharide antibody concentration in European populations have used maternal (not infant) sera and a non-standardised assay. This study aimed to evaluate anti-capsular polysaccharide IgG concentrations associated with protection against invasive group B streptococcus disease in Finnish infants. METHODS: In this retrospective case-control study, we used cord sera from the Finnish DIPP study repository, which was obtained between Jan 1, 1995, and Dec 31, 2017. We included infants aged 6 months or younger with group B streptococcus infection (cases) and healthy infants (controls). We enrolled infants with invasive neonatal group B streptococcus (55 cases) and matched controls (229 controls) aged 6 months or younger after identification from Finnish health registers. We measured anti-capsular polysaccharide IgG (serotypes Ia-V) concentration using a standardised immunoassay and we estimated its relationship to disease risk using a Bayesian model. We used the derived risk-concentration curve to predict potential efficacy of six-valent group B streptococcus capsular polysaccharide vaccine (GBS6) based on previously reported immunogenicity data. FINDINGS: Most (32 [58%] of 55 cases) group B streptococcus cases were due to serotype III and anti-serotype III streptococcus capsular IgG concentrations were higher in serotype III-matched controls than in cases (p<0·001). 0·120-0·266 µg/mL serotype III-specific IgG was estimated to confer 75-90% risk reduction against serotype III disease. A universal risk-concentration curve, aggregating results across all six serotypes, yielded similar results. Application of this curve to GBS6 immunogenicity data predicted maternal immunisation to be more than 80% efficacious for prevention of infant group B streptococcus disease. INTERPRETATION: Higher neonatal anti-capsular polysaccharide serum IgG concentration at birth correlated with reduced risk of infant group B streptococcus disease in Finland. Based on these results, a maternal group B streptococcus capsular conjugate vaccine currently in development is predicted to be efficacious. FUNDING: Pfizer.


Subject(s)
Antibodies, Bacterial , Immunoglobulin G , Streptococcal Infections , Streptococcus agalactiae , Humans , Finland/epidemiology , Retrospective Studies , Streptococcus agalactiae/immunology , Streptococcal Infections/immunology , Streptococcal Infections/prevention & control , Streptococcal Infections/blood , Streptococcal Infections/epidemiology , Case-Control Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Infant, Newborn , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Male , Infant , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Bacterial Capsules/immunology
11.
Diabetologia ; 67(6): 995-1008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38517484

ABSTRACT

AIMS/HYPOTHESIS: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS: Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.


Subject(s)
Autoantibodies , C-Peptide , Diabetes Mellitus, Type 1 , Glycated Hemoglobin , Humans , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/epidemiology , Adolescent , Child , Male , Female , C-Peptide/blood , Adult , Young Adult , Child, Preschool , Autoantibodies/blood , Glycated Hemoglobin/metabolism , Blood Glucose/metabolism , Cohort Studies , Infant , Europe/epidemiology , Middle Aged , Insulin-Secreting Cells/metabolism
12.
Diabetologia ; 67(5): 811-821, 2024 May.
Article in English | MEDLINE | ID: mdl-38369573

ABSTRACT

AIMS/HYPOTHESIS: Infection with coxsackie B viruses (CVBs) can cause diseases ranging from mild common cold-type symptoms to severe life-threatening conditions. CVB infections are considered to be prime candidates for environmental triggers of type 1 diabetes. This, together with the significant disease burden of acute CVB infections and their association with chronic diseases other than diabetes, has prompted the development of human CVB vaccines. The current study evaluated the safety and immunogenicity of the first human vaccine designed against CVBs associated with type 1 diabetes in a double-blind randomised placebo-controlled Phase I trial. METHODS: The main eligibility criteria for participants were good general health, age between 18 and 45 years, provision of written informed consent and willingness to comply with all trial procedures. Treatment allocation (PRV-101 or placebo) was based on a computer-generated randomisation schedule and people assessing the outcomes were masked to group assignment. In total, 32 participants (17 men, 15 women) aged 18-44 years were randomised to receive a low (n=12) or high (n=12) dose of a multivalent, formalin-inactivated vaccine including CVB serotypes 1-5 (PRV-101), or placebo (n=8), given by intramuscular injections at weeks 0, 4 and 8 at a single study site in Finland. The participants were followed for another 24 weeks. Safety and tolerability were the primary endpoints. Anti-CVB IgG and virus-neutralising titres were analysed using an ELISA and neutralising plaque reduction assays, respectively. RESULTS: Among the 32 participants (low dose, n=12; high dose, n=12; placebo, n=8) no serious adverse events or adverse events leading to study treatment discontinuation were observed. Treatment-emergent adverse events considered to be related to the study drug occurred in 37.5% of the participants in the placebo group and 62.5% in the PRV-101 group (injection site pain, headache, injection site discomfort and injection site pruritus being most common). PRV-101 induced dose-dependent neutralising antibody responses against all five CVB serotypes included in the vaccine in both the high- and low-dose groups. Protective titres ≥8 against all five serotypes were seen in >90% of participants over the entire follow-up period. CONCLUSIONS/INTERPRETATION: The results indicate that the tested multivalent CVB vaccine is well tolerated and immunogenic, supporting its further clinical development. TRIAL REGISTRATION: ClinicalTrials.gov NCT04690426. FUNDING: This trial was funded by Provention Bio, a Sanofi company.


Subject(s)
Diabetes Mellitus, Type 1 , Adolescent , Adult , Female , Humans , Male , Young Adult , Antibodies, Neutralizing , Antibodies, Viral , Diabetes Mellitus, Type 1/drug therapy , Double-Blind Method , Vaccination , Vaccines, Combined
13.
Diabetologia ; 67(6): 985-994, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38353727

ABSTRACT

The type 1 diabetes community is coalescing around the benefits and advantages of early screening for disease risk. To be accepted by healthcare providers, regulatory authorities and payers, screening programmes need to show that the testing variables allow accurate risk prediction and that individualised risk-informed monitoring plans are established, as well as operational feasibility, cost-effectiveness and acceptance at population level. Artificial intelligence (AI) has the potential to contribute to solving these issues, starting with the identification and stratification of at-risk individuals. ASSET (AI for Sustainable Prevention of Autoimmunity in the Society; www.asset.healthcare ) is a public/private consortium that was established to contribute to research around screening for type 1 diabetes and particularly to how AI can drive the implementation of a precision medicine approach to disease prevention. ASSET will additionally focus on issues pertaining to operational implementation of screening. The authors of this article, researchers and clinicians active in the field of type 1 diabetes, met in an open forum to independently debate key issues around screening for type 1 diabetes and to advise ASSET. The potential use of AI in the analysis of longitudinal data from observational cohort studies to inform the design of improved, more individualised screening programmes was also discussed. A key issue was whether AI would allow the research community and industry to capitalise on large publicly available data repositories to design screening programmes that allow the early detection of individuals at high risk and enable clinical evaluation of preventive therapies. Overall, AI has the potential to revolutionise type 1 diabetes screening, in particular to help identify individuals who are at increased risk of disease and aid in the design of appropriate follow-up plans. We hope that this initiative will stimulate further research on this very timely topic.


Subject(s)
Artificial Intelligence , Diabetes Mellitus, Type 1 , Mass Screening , Humans , Diabetes Mellitus, Type 1/diagnosis , Mass Screening/methods , Precision Medicine
14.
Diabetes ; 73(2): 306-311, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37934957

ABSTRACT

HLA-DR/DQ haplotypes largely define genetic susceptibility to type 1 diabetes (T1D). The DQB1*06:02-positive haplotype (DR15-DQ602) common in individuals of European ancestry is very rare among children with T1D. Among 4,490 children with T1D in the Finnish Pediatric Diabetes Register, 57 (1.3%) case patients with DQB1*06:02 were identified, in comparison with 26.1% of affected family-based association control participants. There were no differences between DQB1*06:02-positive and -negative children with T1D regarding sex, age, islet autoantibody distribution, or autoantibody levels, but significant differences were seen in the frequency of second class II HLA haplotypes. The most prevalent haplotype present with DQB1*06:02 was DRB1*04:04-DQA1*03-DQB1*03:02, which was found in 27 (47.4%) of 57 children, compared with only 797 (18.0%) of 4,433 among DQB1*06:02-negative case patients (P < 0.001 by χ2 test). The other common risk-associated haplotypes, DRB1*04:01-DQA1*03-DQB1*03:02 and (DR3)-DQA1*05-DQB1*02, were less prevalent in DQB1*06:02-positive versus DQB1*06:02-negative children (P < 0.001). HLA-B allele frequencies did not differ by DQB1*06:02 haplotype between children with T1D and control participants or by DRB1*04:04-DQA1*03-DQB1*03:02 haplotype between DQB1*06:02-positive and -negative children with T1D. The increased frequency of the DRB1*04:04 allele among DQB1*06:02-positive case patients may indicate a preferential ability of the DR404 molecule to present islet antigen epitopes despite competition by DQ602.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Child , Diabetes Mellitus, Type 1/genetics , Haplotypes , HLA-DQ Antigens/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Genetic Predisposition to Disease , Alleles , Autoantibodies , Gene Frequency , HLA-DQ alpha-Chains/genetics
15.
Diabetes Care ; 47(1): 97-100, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37861431

ABSTRACT

OBJECTIVE: To explore the incidence of type 1 diabetes in children in relation to exposure to rotavirus infections. RESEARCH DESIGN AND METHODS: A nationwide register-based ecological study on the 1995-2015 birth cohorts in Finland compared those born before and after the national implementation of the rotavirus vaccine in 2009. RESULTS: When the prevaccine 2001-2005 birth cohorts were compared with the postvaccine birth cohorts, the number of children exposed to rotavirus infection by the age of 5 years decreased from 2,522 per 100,000 children (2.5%) to 171 per 100,000 children (0.2%), while the incidence of type 1 diabetes in those aged <5 years decreased from 71.5 to 54.4 per 100,000 person-years (incidence rate ratio 0.79, 95% CI 0.71-0.86). CONCLUSIONS: At the population level, a decrease in exposure to rotavirus infections was associated with a decrease in the incidence of type 1 diabetes in young children.


Subject(s)
Diabetes Mellitus, Type 1 , Rotavirus Infections , Child , Humans , Infant , Child, Preschool , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Incidence , Hospitalization , Diabetes Mellitus, Type 1/epidemiology , Finland/epidemiology , Birth Cohort
16.
Am J Clin Nutr ; 119(2): 537-545, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142920

ABSTRACT

BACKGROUND: Prospective studies investigating the association among fruit, berry, and vegetable consumption and the risk of islet autoimmunity (IA) and type 1 diabetes (T1D) are few. OBJECTIVES: In this cohort study, we explored whether the consumption of fruits, berries, and vegetables is associated with the IA and T1D development in genetically susceptible children. METHODS: Food consumption data in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) cohort study were available from 5674 children born between September 1996 and September 2004 in the Oulu and Tampere University Hospitals. Diet was assessed with 3-d food records at the age of 3 and 6 mo and annually from 1 to 6 y. The association between food consumption and the risk of IA and T1D was analyzed using joint models adjusted for energy intake, sex, human leukocyte antigen (HLA) genotype, and a family history of diabetes. RESULTS: During the 6-y follow-up, 247 children (4.4%) developed IA and 94 (1.7%) T1D. Furthermore, 64 of 505 children with at least 1 repeatedly positive autoantibody (12.7%) progressed from islet autoantibody positivity to T1D. The consumption of cruciferous vegetables was associated with decreased risk of IA [hazard ratio (HR): 0.83; 95% credible intervals (CI): 0.72, 0.95, per 1 g/MJ increase in consumption] and the consumption of berries with decreased risk of T1D (0.60; 0.47, 0.89). The consumption of banana was associated with increased risk of IA (1.08; 1.04, 1.12) and T1D (1.11; 1.01, 1.21). Only the association between banana and IA remain significant after multiple testing correction. CONCLUSIONS: In children genetically at risk for T1D, the consumption of cruciferous vegetables was associated with decreased risk of IA and consumption of berries with decreased risk of T1D. In addition, the consumption of banana was associated with increased risk of IA and T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Humans , Infant , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/genetics , Autoimmunity/genetics , Fruit , Cohort Studies , Vegetables , Prospective Studies , Autoantibodies
17.
Front Genet ; 14: 1248701, 2023.
Article in English | MEDLINE | ID: mdl-38028613

ABSTRACT

Enteroviral infections have been linked to the development of islet autoimmunity (IA) and type 1 diabetes (T1D), and the coxsackie and adenovirus receptor (CXADR) is one of the ligands used by adenoviruses and enteroviruses for cell internalization. Two CXADR single nucleotide polymorphisms (SNPs), rs6517774 and rs2824404, were previously associated with an increased susceptibility to IA in the international TEDDY study (The Environmental Determinants of Diabetes in the Young). This study aimed to replicate the results by genotyping 2886 children enrolled in the Finnish Diabetes Prediction and Prevention study (DIPP). In our preliminary analysis of the SNPs' allelic distributions, we could not find any association with IA susceptibility. However, a stratified analysis revealed a sex disparity, since the allelic distribution of rs6517774 was different when comparing autoantibody positive females with males; a difference not seen in healthy subjects. By using HLA risk groups and sex as covariates, a Cox regression survival analysis found that the rs6517774 (A/G) SNP was associated with a lower age at seroconversion in females (Female*rs6517774-AA; HR = 1.53, p = 0.002), while introducing a protective effect in males. Accordingly, we propose that rs6517774 alters IA characteristics by modifying the age at seroconversion in a sex-dependent manner. In light of this observation, rs6517774 now joins a limited set on SNPs found to introduce sex-dependent risk effects on the age at IA initiation.

19.
Eur J Pediatr ; 182(12): 5707-5711, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37812243

ABSTRACT

The purpose is to study liver biochemistry in a well-defined cohort of term infants. The methods include healthy term infants (n = 619) provided blood samples at 3 and 6 months of age when participating to the DIABIMMUNE study. The infants were followed up at clinical study visits 3, 6, 12, 18, 24, and 36 months the participation rate being 88.6% at the end of follow-up, while none disclosed any signs of a liver disease. The serum levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bilirubin (BIL), and conjugated bilirubin (BIL-conj) were determined using Siemens Atellica CH 930 analyzers. The results are at 3 months of age, the upper 90% CI for ALT, AST, ALP, GGT, BIL, and BIL-conj were higher than the current upper reference limits in our accredited hospital laboratory. At 6 months, the upper 90% CIs for ALT had declined but was still higher than the cut-offs for a raised value. The upper 90% CI for AST remained as high as at 3 months, whereas ALP, BIL-conj, and GGT had decreased close to the current cut-offs. The type of feeding was associated with the levels of liver biochemistry. Exclusively or partially breastfed infants showed higher ALT, AST, BIL, and BIL-conj values at 3 months than formula-fed. Breastfed infants had higher AST, Bil, and Bil-conj values also at 6 months.  Conclusion: We encourage setting appropriate reference ranges for liver biochemistry for the first year of life and to note the type of feeding. What is Known: • Healthy infants may show higher values of liver biochemistry during their first year of life than in later life. • It has been speculated that type of feeding may play a role in liver biochemistry levels among infants. What is New: • In a cohort of healthy infants, several analytes of liver biochemistry were higher than the currently used upper reference limits at 3 and 6 months of age, and exclusively or partially breastfed infants showed higher values than formula-fed. • The findings address the importance of setting appropriate reference ranges for liver biochemistry for the first year of life.


Subject(s)
Liver Diseases , Liver , Infant , Female , Humans , Bilirubin , Alkaline Phosphatase , gamma-Glutamyltransferase , Aspartate Aminotransferases , Alanine Transaminase
20.
Autoimmunity ; 56(1): 2259118, 2023 12.
Article in English | MEDLINE | ID: mdl-37724526

ABSTRACT

We elucidated the effect of four known T1D-susceptibility associated single nucleotide polymorphism (SNP) markers in three genes (rs12722495 and rs2104286 in IL2RA, rs689 in INS and rs2476601 in PTPN22) on CpG site methylation of their proximal promoters in different lymphocyte subsets using pyrosequencing. The study cohort comprised 25 children with newly diagnosed T1D and 25 matched healthy controls. The rs689 SNP was associated with methylation at four CpG sites in INS promoter: -234, -206, -102 and -69. At all four CpG sites, the susceptibility genotype AA was associated with a higher methylation level compared to the other genotypes. We also found an association between rs12722495 and methylation at CpG sites -373 and -356 in IL2RA promoter in B cells, where the risk genotype AA was associated with lower methylation level compared to the AG genotype. The other SNPs analyzed did not demonstrate significant associations with CpG site methylation in the examined genes. Additionally, we compared the methylation between children with T1D and controls, and found statistically significant methylation differences at CpG -135 in INS in CD8+ T cells (p = 0.034), where T1D patients had a slightly higher methylation compared to controls (87.3 ± 7.2 vs. 78.8 ± 8.9). At the other CpG sites analyzed, the methylation was similar. Our results not only confirm the association between INS methylation and rs689 discovered in earlier studies but also report this association in sorted immune cells. We also report an association between rs12722495 and IL2RA promoter methylation in B cells. These results suggest that at least part of the genetic effect of rs689 and rs12722495 on T1D pathogenesis may be conveyed by DNA methylation.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 1 , Humans , Child , Genotype , Lymphocyte Subsets , B-Lymphocytes , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Interleukin-2 Receptor alpha Subunit/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...