Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Vaccine ; 41(11): 1808-1818, 2023 03 10.
Article En | MEDLINE | ID: mdl-36572604

BACKGROUND: The extent to which vaccinated persons who become infected with SARS-CoV-2 contribute to transmission is unclear. During a SARS-CoV-2 Delta variant outbreak among incarcerated persons with high vaccination rates in a federal prison, we assessed markers of viral shedding in vaccinated and unvaccinated persons. METHODS: Consenting incarcerated persons with confirmed SARS-CoV-2 infection provided mid-turbinate nasal specimens daily for 10 consecutive days and reported symptom data via questionnaire. Real-time reverse transcription-polymerase chain reaction (RT-PCR), viral whole genome sequencing, and viral culture was performed on these nasal specimens. Duration of RT-PCR positivity and viral culture positivity was assessed using survival analysis. RESULTS: A total of 957 specimens were provided by 93 participants, of whom 78 (84 %) were vaccinated and 17 (16 %) were unvaccinated. No significant differences were detected in duration of RT-PCR positivity among vaccinated participants (median: 13 days) versus those unvaccinated (median: 13 days; p = 0.50), or in duration of culture positivity (medians: 5 days and 5 days; p = 0.29). Among vaccinated participants, overall duration of culture positivity was shorter among Moderna vaccine recipients versus Pfizer (p = 0.048) or Janssen (p = 0.003) vaccine recipients. In post-hoc analyses, Moderna vaccine recipients demonstrated significantly shorter duration of culture positivity compared to unvaccinated participants (p = 0.02). When restricted to participants without reported prior infection, the difference between Moderna vaccine recipients and unvaccinated participants was more pronounced (medians: 3 days and 6 days, p = 0.002). CONCLUSIONS: Infectious periods for vaccinated and unvaccinated persons who become infected with SARS-CoV-2 are similar and can be highly variable, though some vaccinated persons are likely infectious for shorter durations. These findings are critically important, especially in congregate settings where viral transmission can lead to large outbreaks. In such settings, clinicians and public health practitioners should consider vaccinated, infected persons to be no less infectious than unvaccinated, infected persons.


COVID-19 , Prisons , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks
2.
PeerJ ; 10: e13821, 2022.
Article En | MEDLINE | ID: mdl-36093336

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has spread globally and is being surveilled with an international genome sequencing effort. Surveillance consists of sample acquisition, library preparation, and whole genome sequencing. This has necessitated a classification scheme detailing Variants of Concern (VOC) and Variants of Interest (VOI), and the rapid expansion of bioinformatics tools for sequence analysis. These bioinformatic tools are means for major actionable results: maintaining quality assurance and checks, defining population structure, performing genomic epidemiology, and inferring lineage to allow reliable and actionable identification and classification. Additionally, the pandemic has required public health laboratories to reach high throughput proficiency in sequencing library preparation and downstream data analysis rapidly. However, both processes can be limited by a lack of a standardized sequence dataset. Methods: We identified six SARS-CoV-2 sequence datasets from recent publications, public databases and internal resources. In addition, we created a method to mine public databases to identify representative genomes for these datasets. Using this novel method, we identified several genomes as either VOI/VOC representatives or non-VOI/VOC representatives. To describe each dataset, we utilized a previously published datasets format, which describes accession information and whole dataset information. Additionally, a script from the same publication has been enhanced to download and verify all data from this study. Results: The benchmark datasets focus on the two most widely used sequencing platforms: long read sequencing data from the Oxford Nanopore Technologies platform and short read sequencing data from the Illumina platform. There are six datasets: three were derived from recent publications; two were derived from data mining public databases to answer common questions not covered by published datasets; one unique dataset representing common sequence failures was obtained by rigorously scrutinizing data that did not pass quality checks. The dataset summary table, data mining script and quality control (QC) values for all sequence data are publicly available on GitHub: https://github.com/CDCgov/datasets-sars-cov-2. Discussion: The datasets presented here were generated to help public health laboratories build sequencing and bioinformatics capacity, benchmark different workflows and pipelines, and calibrate QC thresholds to ensure sequencing quality. Together, improvements in these areas support accurate and timely outbreak investigation and surveillance, providing actionable data for pandemic management. Furthermore, these publicly available and standardized benchmark data will facilitate the development and adjudication of new pipelines.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Benchmarking , Computational Biology , Sequence Analysis
3.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Article En | MEDLINE | ID: mdl-35143464

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Centers for Disease Control and Prevention, U.S. , Genomics , Humans , Prevalence , Public Health Surveillance/methods , United States/epidemiology
4.
J Clin Microbiol ; 60(1): e0174221, 2022 01 19.
Article En | MEDLINE | ID: mdl-34705535

Point-of-care antigen tests are an important tool for SARS-CoV-2 detection. Antigen tests are less sensitive than real-time reverse transcriptase PCR (rRT-PCR). Data on the performance of the BinaxNOW antigen test compared to rRT-PCR and viral culture by symptom and known exposure status, timing during disease, or exposure period and demographic variables are limited. During 3 to 17 November 2020, we collected paired upper respiratory swab specimens to test for SARS-CoV-2 by rRT-PCR and Abbott BinaxNOW antigen test at two community testing sites in Pima County, Arizona. We administered a questionnaire to capture symptoms, known exposure status, and previous SARS-CoV-2 test results. Specimens positive by either test were analyzed by viral culture. Previously we showed overall BinaxNOW sensitivity was 52.5%. Here, we showed BinaxNOW sensitivity increased to 65.7% among currently symptomatic individuals reporting a known exposure. BinaxNOW sensitivity was lower among participants with a known exposure and previously symptomatic (32.4%) or never symptomatic (47.1%) within 14 days of testing. Sensitivity was 71.1% in participants within a week of symptom onset. In participants with a known exposure, sensitivity was highest 8 to 10 days postexposure (75%). The positive predictive value for recovery of virus in cell culture was 56.7% for BinaxNOW-positive and 35.4% for rRT-PCR-positive specimens. Result reporting time was 2.5 h for BinaxNOW and 26 h for rRT-PCR. Point-of-care antigen tests have a shorter turnaround time than laboratory-based nucleic acid amplification tests, which allows for more rapid identification of infected individuals. Antigen test sensitivity limitations are important to consider when developing a testing program.


COVID-19 , SARS-CoV-2 , Antigens, Viral , Humans , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
5.
MMWR Morb Mortal Wkly Rep ; 70(3): 100-105, 2021 Jan 22.
Article En | MEDLINE | ID: mdl-33476316

Rapid antigen tests, such as the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW), offer results more rapidly (approximately 15-30 minutes) and at a lower cost than do highly sensitive nucleic acid amplification tests (NAATs) (1). Rapid antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in symptomatic persons (2), but data are lacking on test performance in asymptomatic persons to inform expanded screening testing to rapidly identify and isolate infected persons (3). To evaluate the performance of the BinaxNOW rapid antigen test, it was used along with real-time reverse transcription-polymerase chain reaction (RT-PCR) testing to analyze 3,419 paired specimens collected from persons aged ≥10 years at two community testing sites in Pima County, Arizona, during November 3-17, 2020. Viral culture was performed on 274 of 303 residual real-time RT-PCR specimens with positive results by either test (29 were not available for culture). Compared with real-time RT-PCR testing, the BinaxNOW antigen test had a sensitivity of 64.2% for specimens from symptomatic persons and 35.8% for specimens from asymptomatic persons, with near 100% specificity in specimens from both groups. Virus was cultured from 96 of 274 (35.0%) specimens, including 85 (57.8%) of 147 with concordant antigen and real-time RT-PCR positive results, 11 (8.9%) of 124 with false-negative antigen test results, and none of three with false-positive antigen test results. Among specimens positive for viral culture, sensitivity was 92.6% for symptomatic and 78.6% for asymptomatic individuals. When the pretest probability for receiving positive test results for SARS-CoV-2 is elevated (e.g., in symptomatic persons or in persons with a known COVID-19 exposure), a negative antigen test result should be confirmed by NAAT (1). Despite a lower sensitivity to detect infection, rapid antigen tests can be an important tool for screening because of their quick turnaround time, lower costs and resource needs, high specificity, and high positive predictive value (PPV) in settings of high pretest probability. The faster turnaround time of the antigen test can help limit transmission by more rapidly identifying infectious persons for isolation, particularly when used as a component of serial testing strategies.


COVID-19 Serological Testing , COVID-19/diagnosis , Community Health Services , Adolescent , Adult , Aged , Aged, 80 and over , Arizona/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Child , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Time Factors , Young Adult
6.
mSystems ; 4(6)2019 Nov 19.
Article En | MEDLINE | ID: mdl-31744907

Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species.

7.
Article En | MEDLINE | ID: mdl-30745393

Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to Escherichia coli; plasmids were stable in conjugants after multiple passages on nonselective media. mcr-1 was located on an IncX4 (n = 3) or IncN (n = 1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate that the mcr-1-bearing plasmids in this study were highly transferable in vitro and stable in the recipients.


Escherichia coli Proteins/genetics , Escherichia coli/genetics , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Humans , Microbial Sensitivity Tests/methods , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods
8.
Microb Genom ; 4(4)2018 04.
Article En | MEDLINE | ID: mdl-29616896

Neisseria meningitidis serogroup B (MnB) was responsible for two independent meningococcal disease outbreaks at universities in the USA during 2013. The first at University A in New Jersey included nine confirmed cases reported between March 2013 and March 2014. The second outbreak occurred at University B in California, with four confirmed cases during November 2013. The public health response to these outbreaks included the approval and deployment of a serogroup B meningococcal vaccine that was not yet licensed in the USA. This study investigated the use of whole-genome sequencing(WGS) to examine the genetic profile of the disease-causing outbreak isolates at each university. Comparative WGS revealed differences in evolutionary patterns between the two disease outbreaks. The University A outbreak isolates were very closely related, with differences primarily attributed to single nucleotide polymorphisms/insertion-deletion (SNP/indel) events. In contrast, the University B outbreak isolates segregated into two phylogenetic clades, differing in large part due to recombination events covering extensive regions (>30 kb) of the genome including virulence factors. This high-resolution comparison of two meningococcal disease outbreaks further demonstrates the genetic complexity of meningococcal bacteria as related to evolution and disease virulence.


Disease Outbreaks , Evolution, Molecular , Meningitis, Meningococcal , Neisseria meningitidis, Serogroup B/genetics , Phylogeny , Polymorphism, Single Nucleotide , Adolescent , Adult , California/epidemiology , Female , Humans , Male , Meningitis, Meningococcal/epidemiology , Meningitis, Meningococcal/genetics , New Jersey/epidemiology , Universities
9.
Genome Announc ; 6(15)2018 Apr 12.
Article En | MEDLINE | ID: mdl-29650580

Shigella spp. are enteric pathogens that cause shigellosis. We report here the high-quality whole-genome sequences of 59 historical Shigella strains that represent the four species and a variety of serotypes.

10.
Genome Announc ; 6(2)2018 Jan 11.
Article En | MEDLINE | ID: mdl-29326203

Enterotoxigenic Escherichia coli (ETEC) is an important diarrheagenic pathogen. We report here the high-quality whole-genome sequences of 21 ETEC strains isolated from patients in the United States, international diarrheal surveillance studies, and cruise ship outbreaks.

11.
Infect Immun ; 86(4)2018 04.
Article En | MEDLINE | ID: mdl-29358336

Despite high vaccine coverage, pertussis cases in the United States have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The United States employs acellular vaccines exclusively, and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the United States retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures, as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor the production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 U.S. surveillance isolates collected from 2010 to 2016 identified two that were both Prn and Fha deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutations to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure.


Adhesins, Bacterial/genetics , Bordetella pertussis/genetics , Bordetella pertussis/immunology , Genome, Bacterial , Genomics , Virulence Factors, Bordetella/genetics , Adhesins, Bacterial/biosynthesis , Gene Duplication , Genomics/methods , Humans , Mutation , Phylogeny , Polymorphism, Single Nucleotide , Sequence Deletion , Virulence Factors, Bordetella/biosynthesis , Whole Genome Sequencing , Whooping Cough/immunology , Whooping Cough/microbiology
12.
Genome Announc ; 6(1)2018 Jan 04.
Article En | MEDLINE | ID: mdl-29301876

Escherichia spp., including E. albertii and E. coli, Shigella dysenteriae, and S. flexneri are causative agents of foodborne disease. We report here reference-level whole-genome sequences of E. albertii (2014C-4356), E. coli (2011C-4315 and 2012C-4431), S. dysenteriae (BU53M1), and S. flexneri (94-3007 and 71-2783).

13.
Genome Announc ; 5(11)2017 Mar 16.
Article En | MEDLINE | ID: mdl-28302788

Enterobacteriaceae carrying plasmid-mediated colistin resistance have been found around the world. We report here the high-quality whole-genome sequence of an Escherichia coli O157:H48 isolate (2016C-3936C1) from Connecticut that carried the mcr-1 resistance gene on an IncX4-type plasmid.

14.
J Bacteriol ; 199(8)2017 04 15.
Article En | MEDLINE | ID: mdl-28167525

Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology.IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a large number of repetitive mobile genetic elements that obstruct genome analysis. However, these mobile elements facilitate large rearrangements that alter the order and orientation of essential protein-encoding genes, which otherwise exhibit little nucleotide sequence diversity. By comparing the complete genome assemblies from 257 isolates, we show that specific rearrangements have been conserved throughout recent evolutionary history, perhaps by eliciting changes in gene expression, which may also provide useful information for molecular epidemiology.


Chromosomes, Bacterial/genetics , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Bacterial/genetics , Genome, Bacterial , Bordetella pertussis , Conserved Sequence , Gene Order/genetics , Genes, Bacterial/genetics , Genetic Linkage , Genetic Variation/genetics , Phylogeny
15.
mSphere ; 1(6)2016.
Article En | MEDLINE | ID: mdl-27904879

Epidemics of invasive meningococcal disease (IMD) caused by meningococcal serogroup A have been eliminated from the sub-Saharan African so-called "meningitis belt" by the meningococcal A conjugate vaccine (MACV), and yet, other serogroups continue to cause epidemics. Neisseria meningitidis serogroup W remains a major cause of disease in the region, with most isolates belonging to clonal complex 11 (CC11). Here, the genetic variation within and between epidemic-associated strains was assessed by sequencing the genomes of 92 N. meningitidis serogroup W isolates collected between 1994 and 2012 from both sporadic and epidemic IMD cases, 85 being from selected meningitis belt countries. The sequenced isolates belonged to either CC175 (n = 9) or CC11 (n = 83). The CC11 N. meningitidis serogroup W isolates belonged to a single lineage comprising four major phylogenetic subclades. Separate CC11 N. meningitidis serogroup W subclades were associated with the 2002 and 2012 Burkina Faso epidemics. The subclade associated with the 2012 epidemic included isolates found in Burkina Faso and Mali during 2011 and 2012, which descended from a strain very similar to the Hajj (Islamic pilgrimage to Mecca)-related Saudi Arabian outbreak strain from 2000. The phylogeny of isolates from 2012 reflected their geographic origin within Burkina Faso, with isolates from the Malian border region being closely related to the isolates from Mali. Evidence of ongoing evolution, international transmission, and strain replacement stresses the importance of maintaining N. meningitidis surveillance in Africa following the MACV implementation. IMPORTANCE Meningococcal disease (meningitis and bloodstream infections) threatens millions of people across the meningitis belt of sub-Saharan Africa. A vaccine introduced in 2010 protects against Africa's then-most common cause of meningococcal disease, N. meningitidis serogroup A. However, other serogroups continue to cause epidemics in the region-including serogroup W. The rapid identification of strains that have been associated with prior outbreaks can improve the assessment of outbreak risk and enable timely preparation of public health responses, including vaccination. Phylogenetic analysis of newly sequenced serogroup W strains isolated from 1994 to 2012 identified two groups of strains linked to large epidemics in Burkina Faso, one being descended from a strain that caused an outbreak during the Hajj pilgrimage in 2000. We find that applying whole-genome sequencing to meningococcal disease surveillance collections improves the discrimination among strains, even within a single nation-wide epidemic, which can be used to better understand pathogen spread.

16.
Genome Announc ; 4(6)2016 Nov 17.
Article En | MEDLINE | ID: mdl-27856590

We report here the complete annotated genome sequence of the Burkholderia stabilis type strain ATCC BAA-67. There were three circular chromosomes with a combined size of 8,527,947 bp and G+C composition of 66.4%. These characteristics closely resemble the genomes of other sequenced members of the Burkholderia cepacia complex.

17.
Genome Announc ; 4(3)2016 Jun 30.
Article En | MEDLINE | ID: mdl-27365352

Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen. We report here the high-quality draft whole-genome sequences of five STEC strains isolated from clinical cases in the United States. This report is for STEC of serotypes O55:H7, O79:H7, O91:H14, O153:H2, and O156:H25.

18.
mSphere ; 1(3)2016.
Article En | MEDLINE | ID: mdl-27303739

During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis.

19.
Genome Announc ; 4(3)2016 Jun 16.
Article En | MEDLINE | ID: mdl-27313304

The complete circularized genome sequences of selected specimens from the largest known Elizabethkingia anophelis outbreak to date are described here. Genomic rearrangements observed among the outbreak strains are discussed.

20.
Genome Announc ; 3(6)2015 Dec 17.
Article En | MEDLINE | ID: mdl-26679598

Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Here, we report complete whole-genome sequences for two STEC strains of serotypes O119:H4 and O165:H25 isolated from clinical cases in the United States.

...