Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
J Environ Manage ; 302(Pt A): 114001, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34731706

ABSTRACT

Landfilling is the most common option for solid waste disposal worldwide. Landfill sites can emit significant quantities of greenhouse gases (GHGs; e.g., methane, carbon dioxide, and nitrous oxide) and release toxic and odorous compounds (e.g., sulfides). Due to the complex composition and characteristics of landfill surface gas emissions, the quantification and control of landfill emissions are challenging. This review attempts to comprehensively understand landfill emission quantification and control options by primarily focusing on GHGs and odor compounds. Landfill emission quantification was highlighted by combining different emissions monitoring approaches to improve the quality of landfill emission data. Also, landfill emission control requires a specific approach that targets emission compounds or a systematic approach that reduces overall emissions by combining different control methods since the diverse factors dominate the emissions of various compounds and their transformation. This integrated knowledge of emission quantification and control options for GHGs and odor compounds is beneficial for establishing field monitoring campaigns and incorporating mitigation strategies to quantify and control multiple landfill emissions.


Subject(s)
Air Pollutants , Refuse Disposal , Air Pollutants/analysis , Environmental Monitoring , Gases/analysis , Methane/analysis , Solid Waste , Waste Disposal Facilities
2.
J Hazard Mater ; 416: 126042, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492889

ABSTRACT

Bottom ash (BA) management is often implemented through its co-disposal with municipal solid waste (MSW) in landfills. However, BA co-disposal may lead to heavy metal leaching in landfills. In this study, the effect of BA co-disposal on heavy metal leaching behavior under different scenarios, specifically, MSW, low BA co-disposal (BA_L), high BA co-disposal (BA_H), and BA monofill were investigated. The heavy metal concentrations in the leachate decreased in landfills over time. The leached metals primarily included Zn, Cu, Mn, Pb, Cr, and Cd. The discharge concentration ratio of heavy metals in the leachates exhibited the following decreasing order: MSW, BA_L, BA_H, and BA. In particular, the discharge concentration ratio of Cu in the MSW, BA_L, BA_H, and BA cases ranged from 7.1 × 10-3 to 8.8 × 10-1 (mean = 3.0 ×10-1), 2.8 × 10-4 to 2.0 × 10-1 (mean = 5.4 ×10-2), 9.1 × 10-5 to 3.0 × 10-2 (mean = 5.9 ×10-3), and 4.4 × 10-4 to 7.9 × 10-3 (mean = 1.8 ×10-3), respectively. Moreover, the leaching of the heavy metals could be attributed to waste contents, properties of the heavy metals, and leachate characteristics, such as the pH, chemical oxygen demand (COD), alkalinity, and Cl- content. The presented findings can help clarify the leaching characteristics of heavy metals in BA co-disposal landfills, thereby facilitating the optimization of practical landfills.


Subject(s)
Metals, Heavy , Refuse Disposal , Coal Ash , Incineration , Metals, Heavy/analysis , Solid Waste/analysis , Waste Disposal Facilities
3.
Sci Total Environ ; 774: 145744, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33609839

ABSTRACT

Co-disposal of bottom ash (BA) with municipal solid waste (MSW) in landfills is commonly used for BA management. However, BA co-disposal may cause clogging of geotextiles in MSW landfills. This study investigated the effect of different BA co-disposal ratios on geotextile clogging, including MSW, low ash co-disposed (BA_L), high ash co-disposed (BA_H) landfills, and BA mono-fill. Results showed that the BA_L group increased the geotextile clogging by 0.1-0.6 times, compared to that in the MSW landfill. In contrast, the geotextile clogging of the BA_H and BA groups was reduced than that in the MSW landfill. The clogging was in a dynamic process during the experimental period in all the conditions, including chemical clogging and bio-clogging. Moreover, bio-clogging was the main contributor to the geotextile clogging, accounting for 64-83% of the total clogging mass. The BA co-disposal affected the leachate characteristics, such as pH, calcium concentration, and alkalinity, resulting in chemical clogging. When pH was above 7.0, calcium concentration and alkalinity were limiting factors for the calcium carbonate formation. In terms of the bio-clogging, the microbial analysis indicated that different BA co-disposal ratios influenced the diversity and structure of microbial community. These findings could help clarify the effect of BA co-disposal on geotextile clogging, thus useful to landfill operation in practice.

4.
Waste Manag ; 120: 459-466, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33127278

ABSTRACT

Bio-clogging of geotextile is a big challenge for the leachate collection system in landfills. It is important to understand the characteristics of geotextile bio-clogging to develop control technologies. This study investigated the characteristics of geotextile bio-clogging in municipal solid waste landfill (MSW_G) and bottom ash (BA) co-disposal landfill (BA_G). Results showed that the bio-clogging mass of per area in MSW_G and BA_G was 49 ± 5 g/m2 and 57 ± 3 g/m2, respectively. Bio-clogging was dominated by live cells in both MSW_G and BA_G. The confocal laser scanning microscopy images revealed that live cells percentage was 46% in MSW_G, while it increased to 77% in BA_G. In contrast, the percentage of the dead cells was 47% and 9% in MSW_G and BA_G, respectively. The biofilm formed in BA _G was thinner and denser than that in MSW_G. Based on the microbial analysis, the biofilms of BA_G had a higher genetic amount and diversity than these of MSW_G. The total amount of extracellular polymeric substances in BA_G was 45.29 ± 4.52 mg/g volatile suspended solids, which was 1.5 times of that in MSW_G. The co-disposal of BA increased the microbial diversity and accelerated bio-clogging due to the high calcium concentration. These findings provide a better understanding of the bio-clogging characteristics, which is helpful to control bio-clogging in co-disposal landfills.


Subject(s)
Coal Ash , Refuse Disposal , Solid Waste/analysis , Waste Disposal Facilities
5.
Chemosphere ; 268: 128779, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33172671

ABSTRACT

In this study, graphene oxide (GO) was coated in geotextiles (GO-GT) to evaluate its potential for bio-clogging mitigation in the leachate collection system (LCS) of a landfill. Results showed that GO coating enhanced the surface hydrophilicity of geotextile. Bacterial experiments revealed that dead cells in the bio-clogging increased to 68.7% with GO-GT, compared to that in the GT (44.0%). After 136 days of operation, the GO-GT reduced the bio-clogging by decreasing the total amount of bacteria and the percentage of living bacteria. The total amount of extracellular polymeric substances in the GO-GT and GT was 22.8 ± 4.4 and 52.8 ± 4.8 mg/g of volatile suspended solids, respectively. Microbial analysis showed that Limnochordia and Symbiobacteriia were the most sensitive groups, with a decreased percentage in the GO-GT. Electrostatic repulsion and surface wrinkling were attributed to the attenuation effect on the GO-GT. These results imply the potential application of GO-coated geotextile for reducing bio-clogging in landfill LCS.


Subject(s)
Graphite , Refuse Disposal , Water Pollutants, Chemical , Solid Waste/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis
6.
Waste Manag ; 107: 91-100, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32278220

ABSTRACT

This research investigated the roles of zero-valent iron (ZVI) in a two-stage food waste digestion process. ZVI was added separately to hydrolytic-acidogenic (HA) and methanogenic (MG) stages to understand its impacts on FW hydrolysis-acidification, methanogenesis and bioenergy recovery efficiency. Results showed that ZVI effectively enhanced the overall performance of digestion as compared with the controls without ZVI. Supplementing with ZVI could facilitate the HA process along with faster hydrogen generation. In addition, ZVI shortened the lag phase of MG stage by 42.43-57.23% and raised the maximum methane production rate and yield by 33.99-38.20% and 11-13%, respectively, compared with the controls. Supplementing ZVI to the HA stage could simultaneously raise the bioenergy recovery efficiency of the HA and MG stages by 71.92% and 96.96%, respectively. Further studies demonstrated that iron corrosion contributed little to hydrogen and methane production. The enrichment of syntrophic bacteria, Pseudomonas, and methanogens, and the enhancement of electron transfer among those microbes was supposed to be the main possible mechanism for the enhancement of methanogenesis with ZVI assisted.


Subject(s)
Iron , Refuse Disposal , Anaerobiosis , Bioreactors , Food , Methane , Sewage , Waste Disposal, Fluid
7.
Environ Pollut ; 263(Pt B): 114413, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32220690

ABSTRACT

Methane (CH4) mitigation of biocovers or biofilters for landfills is influenced by the bed material and oxygen availability. The improvement of active aeration for the CH4 oxidation efficiency of biochar-amended landfill soil cover was investigated over a period of 101 days. There were column 1 as the control group, column 2 with biochar amending the soil cover, and column 3 with daily active aeration besides the same biochar amendment. All groups were inoculated with enriched methane oxidation bacteria (MOB). The average CH4 removal efficiency was up to 78.6%, 85.2% and 90.6% for column 1, 2, and 3, respectively. The depth profiles of CH4 oxidation efficiencies over the whole period also showed that the stimulation of CH4 oxidation by biochar amendment was apparent in the top 35 cm but became very faint after two months. This probably was due to the rapid depletion of nitrogen nutrition caused by enhanced methanotrophic activities. While through aeration, CH4 oxidation efficiency was further improved for column 3 than column 2. This enhancement also lasted for the whole period with a reduced decline of CH4 oxidation. Finally, the major MOB Methylocystis, commonly found in the three columns, were most abundant in the top 35 cm for column 3. A more balanced ratio of MOB and more homogeneous microbial community structures across different soil depths were also the results of active aeration.


Subject(s)
Methane , Refuse Disposal , Charcoal , Oxidation-Reduction , Soil , Soil Microbiology , Waste Disposal Facilities
8.
Chemosphere ; 250: 126264, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32105861

ABSTRACT

The performance of simulated municipal solid waste (MSW) landfills with two different biogas collection practices - (1) upward and upward-downward biogas flow collection (LT-TB) in sequence and (2) simultaneous upward-downward biogas flow collection (LTB) from the beginning of the anaerobic degradation process - was investigated in terms of landfill gas and leachate, enzyme activity, and microbial community structure associated with MSW compression and leachate recirculation. The cumulative methane volume in LTB was 1.5 times higher than that in LT-TB. With MSW compression and leachate recirculation, amylase and lipase activity were enhanced in LTB. In LT-TB, the activities gradually decreased after reaching a peak with compression. The two biogas collection strategies influenced the community structure and activity of bacteria and archaea. The upward and downward gas collection flow with waste compression and leachate recirculation improved the environment for enriching bacterial phyla Firmicutes, Proteobacteria, and Synergistetes and genus Methanosarcina in Archaea.


Subject(s)
Refuse Disposal/methods , Air Pollutants , Archaea , Bacteria , Biodegradation, Environmental , Biofuels , Bioreactors , Methane , Solid Waste/analysis , Waste Disposal Facilities , Water Pollutants
9.
Environ Pollut ; 260: 114074, 2020 May.
Article in English | MEDLINE | ID: mdl-32018201

ABSTRACT

The total plastic waste generation in China has not been reported due to a lack of information on diverted recyclable wastes. This study was conducted with two objectives: to identify the characteristics of plastic waste generation, recycling, and compositions in informal and formal waste management sectors in selected Shenzhen (SZ) and Honghuatao Town (HT) study areas in China and to measure the leachability of the heavy metals of waste plastics using the synthetic precipitation leaching procedure (SPLP) and leaching tests with different pHs. The results showed that film plastic waste occupied the largest proportion among plastic components in the mixed MSW. It is estimated that the plastic waste generation rates in SZ and HT were 0.20-0.33 kg/capita/day and 0.08-0.14 kg/capita/day, respectively. The plastic recycling rates of SZ and HT ranged from 6.24 to 11.93% and 16.84-33.31%, respectively. Among the measured heavy metals, Ba, Zn, Cu, Mn contents were high in most plastic samples. In addition, Mn, Pb, Ni, and Zn in plastic wastes occasionally exceeded Chinese national drinking water standards in the different pH leaching tests and SPLP. Therefore, it is suggested that plastic waste should be managed in a controlled manner.


Subject(s)
Metals, Heavy , Plastics , Recycling , Solid Waste , China , Cities
10.
J Air Waste Manag Assoc ; 70(4): 455-467, 2020 04.
Article in English | MEDLINE | ID: mdl-32091971

ABSTRACT

Although biochar addition into the anaerobic digestion of food waste (FW) is an efficient means to enhance methane production, the effects of biochar on various FW components remain unclear. Laboratory batch experiments were conducted to investigate the impact of sewage sludge-derived biochar (SSB) supplementation on the anaerobic digestion (AD) of major FW components, including carbohydrate-rich, protein-rich, and lipid-rich substrates. The lag phase of AD with the carbohydrate-rich substrate was 48.6% shorter when SSB was added, and the cumulative methane yield was 4.74 times higher compared to AD without biochar. SSB supplementation also increased the rate of methane production from the lipid-rich substrate. However, the effect of SSB addition on AD of the protein-rich substrate was minor. Analysis of the microbial communities revealed that methanogen growth was enhanced during AD of the carbohydrate-rich and lipid-rich substrates, but not the protein-rich substrate, following SSB supplementation. Also, the most dominant methanogenic genus varied with the substrates. SSB addition promoted the growth of hydrolytic and fermentative bacteria, particularly phylum Bacteroidetes.Implications: Biochar supplementation has been studied to overcome the shortcomings of anaerobic digestion (AD). However, the effects of biochar on different substrates remain unclear. This study compared carbohydrate-rich, protein-rich, and lipid-rich substrates in anaerobic digestion with sewage sludge-derived biochar (SSB). SSB supplementation improved methane generation from all but the protein-rich substrate. The study results imply that the effect of SSB addition on AD varied with the substrate due to the substrates underwent different degradation processes with different microbial communities.


Subject(s)
Bioreactors , Charcoal , Methane/analysis , Sewage , Anaerobiosis , Carbohydrates , Lipids , Microbiota , Proteins
11.
Chemosphere ; 247: 125866, 2020 May.
Article in English | MEDLINE | ID: mdl-31951955

ABSTRACT

Anaerobic digestion (AD) is a promising technology for food waste management, but frequently restricted with long lag phase as a consequent of acidification. Two laboratory experiments were conducted to investigate the effects of iron materials on food waste AD. Experiment 1 compared the effects of iron oxide (IO) and zero valent iron (ZVI) on AD performance. The results showed that both IO and ZVI could enhance methane (CH4) generation, but IO showed better performance regarding the reduction of lag phase. The lag phase of the reactor supplemented with IO was 17.4% and 42.7% shorter than that of the reactor supplemented with ZVI and the control, respectively. Based on these results, experiment 2 was designed to examine the role of IO in alleviation of acid stress at high substrate to inoculum (SI) ratio. The results showed that supplemented IO into reactor could ensure a successful methanogenesis when operating at high SI ratio, while IO-free reactor was failed to generate CH4 although operating for 77 days. Supplementing IO into the reactor after 48 h of digestion could restore the CH4 generation, though its lag phase was 2.6 times of the reactor supplemented with IO at the beginning of the digestion. Microbial community structure analysis revealed that IO could simultaneously enrich Syntrophomonas and methanogens (i.e. Methanobacterium, Methanofollis and Methanosarcina), and might promote electron transfer between those two types of microbes, which were critical for achieving an effective methanogenesis.


Subject(s)
Bioreactors/microbiology , Clostridiales/metabolism , Ferric Compounds/chemistry , Methane/metabolism , Methanobacterium/metabolism , Refuse Disposal/methods , Anaerobiosis , Food , Iron/chemistry , Models, Theoretical , Sewage/microbiology , Solid Waste
12.
Sci Total Environ ; 693: 133594, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31377353

ABSTRACT

The in-situ mitigation of methane (CH4) in landfill gas using landfill cover soil (LCS) is a cost-effective approach, but its efficiency needs to be enhanced. In this study, we incorporated an enriched methane-oxidizing bacteria (MOB) consortium into LCS and established four biochar-amended LCS groups with biochar produced at 300 °C (BC300), 400 °C (BC400), 500 °C (BC500), and 600 °C (BC600). The purpose was to evaluate the CH4 oxidation capacity of biochar-amended LCS after inoculation with MOB and to investigate how the physicochemical properties of biochar that are influenced by the pyrolysis temperature affect the performance and microbial activity of biochar-amended LCS. It was found that a 15% volume ratio (representing a mass ratio of 2.49%-2.78%) for biochar amendment in LCS enhanced CH4 removal efficiency, with the highest removal observed to be 46% for BC400-amended LCS compared to 30% for the original LCS. In addition, CH4 adsorption by the biochar was not observed, and a 15% mass ratio for biochar in the LCS had no or a negative impact. Besides improving the water-holding capacity and gas permeability of LCS, other possible advantages of biochar amendment in terms of CH4 oxidization include greater retention of nutrients, electron acceptors, and exchangeable cations, as well as introducing iron ions. It was also found that CH4 oxidation capacity and the methanotroph activity of biochar-amended LCS did not continue to increase with higher pyrolysis temperatures, even though higher micropore volumes and surface areas were obtained at higher pyrolysis temperatures. From this study, BC400 was identified as the optimal choice for the best performance in terms of enhancing both the CH4 oxidation capacity of the amended LCS and the growth of type II methanotroph Methylocystaceae, which can possibly be attributed to having the highest cation exchange capacity of the four biochars.


Subject(s)
Methane/chemistry , Refuse Disposal/methods , Temperature , Waste Disposal Facilities , Charcoal/chemistry , Soil/chemistry
13.
Sci Total Environ ; 687: 161-167, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31207506

ABSTRACT

Co-disposal of bottom ash (BA) with municipal solid waste (MSW) in landfills is a common way for BA management. However, BA co-disposal in MSW landfills may accelerate geotextile clogging and reduce the performance of leachate collection system. This study compared geotextile clogging in a simulated MSW landfill leachate (MSWL) and a BA co-disposed landfill leachate (BAL) at different landfill stages. Geotextile clogging test was conducted using the MSWL and BAL taken from the simulated landfills on the 10th, 80th, 140th and 200th day, respectively. The results demonstrated that geotextile clogging varied with landfill age, due to the change of leachate characteristics. The mass of clogging material in geotextiles with BAL increased from 0.45 g to 2.74 g, which was 43.87%-63.73% greater than those with MSWL. The formation of biofilm was the main contributor for the geotextile clogging. At the same stage, the amount of biofilm formed on geotextile in different leachate was comparable. However, the amounts of CaCO3 precipitation on geotextile in BAL were 3.85-10.44 times of those in MSW leachate. The pH of leachate played a critical role in CaCO3 precipitation. The microbial analysis revealed that the co-disposal of the BA greatly influenced the microbial community diversity and structure.

14.
Bioresour Technol ; 282: 189-196, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30861448

ABSTRACT

This research investigated the possibility to enhance H2 production using untreated inoculum in a two-stage hydrogen-methane process from food waste. Batch experiments were conducted to evaluate the H2 production efficiency at different F/M ratios (ranging from 1:1 to 64:1). The results showed that when a proper F/M ratio was selected, significant H2 production was feasible to be achieved even inoculated with untreated anaerobic sludge. Among the F/M ratios studied, maximum H2 yield (217.98 mL H2 g VS-1 FW) was found in the digester at the F/M of 64:1, which was 93.75 times higher than that of the digester at the F/M of 1:1. Higher hydrogen yield was achieved at the greater F/M ratio, due to the enrichment of the H2 producing bacteria and the reduction of the antagonistic bacteria. The two-stage process allowed more stable methane production and higher overall energy yield compared to the single-stage process.


Subject(s)
Food , Hydrogen/metabolism , Sewage/microbiology , Waste Disposal Facilities
15.
Bioresour Technol ; 266: 516-523, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30005414

ABSTRACT

Anaerobic digestion (AD) is frequently restricted with the long lag phase and low methane (CH4) production rate. Laboratory batch experiments were conducted to investigate the impact of different supplements on the performance of food waste AD, including AC-Ni, AC, and Ni. Results showed that the lag phase of AD was reduced with the addition of those supplementations. Compared with the control group without any supplementation, the AC-Ni could shorten the lag phase by 67% and increase the maximum CH4 production rate by 50%, respectively. The speciation analysis indicated that the environmental risks of the AC-Ni was reduced by 30% after digestion. Microbial community structure analysis revealed that the AC-Ni promoted the evolution and activity of the hydrolytic-fermentative bacteria (e.g. Firmicutes and Bacteroidetes) and methanogens (e.g. Methanobacterium, Methanoregula and Methanomassiliicoccus). This study suggested that the AC-Ni waste could be feasible to be applied to enhance the performance of AD.


Subject(s)
Bioreactors , Charcoal , Nickel/chemistry , Anaerobiosis , Food , Methane , Refuse Disposal , Sewage
16.
Chemosphere ; 208: 108-116, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29864701

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) not only present a risk to human health when released into the air, but also can be precursors to form particulate matter (PM) during sewage sludge pyrolysis. In this study, 16 EPA PAHs in PM (ΣPAHPM) during sewage sludge pyrolysis were investigated with increasing temperature (200oC-1000 °C) and holding time under different operation conditions [inert gas flow rate (IGFR) (200-800 mL/min) and heating rate (5-20 °C/min)]. ΣPAHPM varied with temperature, IGFR, and heating rate, and ranged from 597 (±41) µg/g to 3240 (±868) µg/g. ΣPAHPM decreased with increasing IGFR but increased with rapid heating rate. Among PAHs species in PM, naphthalene (Nap) was commonly detected at low temperature ranges in all tested conditions. Chrysene (CHR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd] pyrene (IND), and benzo[g,h,i]perylene (BghiP) in PM became abundant at high temperature with a low IGFR. At high temperature ranges with high volatile conditions (rapid heating rate and low IGFR), PAH formation and growth reactions were considerable, resulting in the formation of heavy PAHs in PM.


Subject(s)
Incineration , Particulate Matter , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Sewage/chemistry , Humans , Refuse Disposal
17.
Chemosphere ; 195: 40-47, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29253788

ABSTRACT

As a byproduct of municipal solid waste incineration (MSWI) plant, fly ash is becoming a challenge for waste management in recent years. In this study, MSWI fly ash (FA) was evaluated for the potential capacity of odorous gas H2S removal. Results showed that fly ash demonstrated longer breakthrough time and higher H2S capacities than coal fly ash and sandy soil, due to its high content of alkali oxides of metals including heavy metals. H2S adsorption capacities of FA1 and FA2 were 15.89 and 12.59 mg H2S/g, respectively for 750 ppm H2S. The adsorption of H2S on fly ash led to formation of elemental sulfur and metal sulfide. More importantly, the formation of metal sulfide significantly reduced the leachability of heavy metals, such as Cr, Cu, Cd and Pb as shown by TCLP tests. The adsorption isotherms fit well with Langmuir model with the correlation coefficient over 0.99. The adsorption of H2S on fly ash features simultaneous H2S removal and stabilization and heavy metals found in most MSWI fly ash, making fly ash the potential low cost recycled sorbent material.


Subject(s)
Coal Ash/chemistry , Hydrogen Sulfide/chemistry , Incineration/methods , Metals, Heavy/chemistry , Waste Management/methods , Adsorption , Hydrogen Sulfide/isolation & purification , Refuse Disposal/methods , Solid Waste
18.
Waste Manag ; 78: 164-172, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32559901

ABSTRACT

As a main byproduct of municipal solid waste incineration (MSWI), bottom ash (BA) has become a big challenge in operating MSWI plants. The most common method for BA treatment is co-disposal with MSW in landfills, which may cause clogging in the leachate collection system (LCS). This research investigated the characteristics of geotextile clogging in landfills with BA co-disposal. The co-disposal of BA changed the characteristics of leachate, especially increasing the concentration of Ca2+. During the experiment, 0.14 g CaCO3 was precipitated in the MSW geotextile, while it increased to 0.52 g CaCO3 in the BA co-disposed geotextile. Based on mass balance of calcium and thermogravimetric (TG) analysis, the formation of biofilm was the main contributor to the mass increment, accounting for about 82% and 57% mass increment in the MSW and BA co-disposed geotextile, respectively. Moreover, CO2 in landfill gas played an important role in the clogging process, including CaCO3 precipitation and biofilm formation. The results suggested that the co-disposal of BA with MSW can increase the risk of geotextile clogging in landfills.

19.
J Air Waste Manag Assoc ; 66(12): 1245-1256, 2016 12.
Article in English | MEDLINE | ID: mdl-27629922

ABSTRACT

Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day). IMPLICATIONS: In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.


Subject(s)
Bioreactors , Refuse Disposal/methods , Solid Waste , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Biological Oxygen Demand Analysis , Carbon/analysis , Metals, Heavy/analysis , Nitrogen/analysis , Solid Waste/analysis
20.
Waste Manag ; 56: 190-5, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27426021

ABSTRACT

Aeration pretreatment was demonstrated as an efficient technology to promote methane recovery from a bioreactor landfill with high food waste content. In this study, a short-term experiment was conducted to investigate the effects of aerobic-anaerobic operation modes on biogas recovery. Three landfill-simulated columns (anaerobic control (A1), a constant aeration (C1) and a gradually reduced aeration (C2)) were constructed and operated for 130days. The aeration frequency was adjusted by oxygen consumption in an aerated MSW landfill. After aerobic pretreatment was halted, the methanogenic phase was rapidly developed in both the C1 and C2 columns, reducing the volatile fatty acid (VFA) concentrations and increasing pH. The methane volumes per dry MSW produced from the C1 and C2 columns were approximately 62L/kg VS and 75L/kg VS, respectively, while methane produced from the A1 column was almost negligible. The result clearly showed that aerobic pretreatment with gradual reduction of aeration rates could not only improve methane recovery from waste decomposition, but also enhance leachate COD and VFA removal.


Subject(s)
Biofuels/analysis , Methane/analysis , Oxygen/analysis , Solid Waste/analysis , Waste Disposal Facilities , Aerobiosis , Anaerobiosis
SELECTION OF CITATIONS
SEARCH DETAIL