Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters











Publication year range
1.
Funct Integr Genomics ; 24(4): 138, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39147901

ABSTRACT

Artificial intelligence (AI) platforms have emerged as pivotal tools in genetics and molecular medicine, as in many other fields. The growth in patient data, identification of new diseases and phenotypes, discovery of new intracellular pathways, availability of greater sets of omics data, and the need to continuously analyse them have led to the development of new AI platforms. AI continues to weave its way into the fabric of genetics with the potential to unlock new discoveries and enhance patient care. This technology is setting the stage for breakthroughs across various domains, including dysmorphology, rare hereditary diseases, cancers, clinical microbiomics, the investigation of zoonotic diseases, omics studies in all medical disciplines. AI's role in facilitating a deeper understanding of these areas heralds a new era of personalised medicine, where treatments and diagnoses are tailored to the individual's molecular features, offering a more precise approach to combating genetic or acquired disorders. The significance of these AI platforms is growing as they assist healthcare professionals in the diagnostic and treatment processes, marking a pivotal shift towards more informed, efficient, and effective medical practice. In this review, we will explore the range of AI tools available and show how they have become vital in various sectors of genomic research supporting clinical decisions.


Subject(s)
Artificial Intelligence , Molecular Medicine , Humans , Molecular Medicine/methods , Genetics, Medical/trends , Genetics, Medical/methods , Precision Medicine/methods , Genomics/methods
2.
ACS Nano ; 18(25): 16126-16140, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38764224

ABSTRACT

Traditional monoclonal antibodies such as Trastuzumab encounter limitations when treating Human Epidermal Growth Factor Receptor 2 (HER2)-positive breast cancer, particularly in cases that develop resistance. This study introduces plant-derived anti-HER2 variable fragments of camelid heavy chain domain (VHH) fragment crystallizable region (Fc) KEDL(K) antibody as a potent alternative for overcoming these limitations. A variety of biophysical techniques, in vitro assays, and in vivo experiments uncover the antibody's nanoscale binding dynamics with transmembrane HER2 on living cells. Single-molecule force spectroscopy reveals the rapid formation of two robust bonds, exhibiting approximately 50 pN force resistance and bond lifetimes in the second range. The antibody demonstrates a specific affinity for HER2-positive breast cancer cells, including those that are Trastuzumab-resistant. Moreover, in immune-deficient mice, the plant-derived anti-HER2 VHH-FcK antibody exhibits superior antitumor activity, especially against tumors that are resistant to Trastuzumab. These findings underscore the plant-derived antibody's potential as an impactful immunotherapeutic strategy for treating Trastuzumab-resistant HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Receptor, ErbB-2 , Trastuzumab , Trastuzumab/chemistry , Trastuzumab/pharmacology , Humans , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Animals , Female , Drug Resistance, Neoplasm/drug effects , Mice , Cell Line, Tumor , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/chemistry , Cell Proliferation/drug effects
3.
Biotechnol J ; 19(3): e2300552, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528347

ABSTRACT

Production of therapeutic monoclonal antibody (mAb) in transgenic plants has several advantages such as large-scale production and the absence of pathogenic animal contaminants. However, mAb with high mannose (HM) type glycans has shown a faster clearance compared to antibodies produced in animal cells. The neonatal Fc receptor (FcRn) regulates the persistence of immunoglobulin G (IgG) by the FcRn-mediated recycling pathway, which salvages IgG from lysosomal degradation within cells. In this study, Fc-engineering of antirabies virus therapeutic mAb SO57 with the endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) (mAbpK SO57) in plant cell was conducted to enhance its binding activity to human neonatal Fc receptor (hFcRn), consequently improve its serum half-life. Enzyme-linked immunosorbent assay (ELISA) and Surface plasmon resonance assay showed altered binding affinity of the Fc region of three different mAbpK SO57 variants [M252Y/S254T/T256E (MST), M428L/N434S (MN), H433K/N434F (HN)] to hFcRn compared to wild type (WT) of mAbpK SO57. Molecular modeling data visualized the structural alterations in these mAbpK SO57. All of the mAbpK SO57 variants had HM type glycan structures similar to the WT mAbpK SO57. In addition, the neutralizing activity of the three variants against the rabies virus CVS-11 was effective as the WT mAbpK SO57. These results indicate that the binding affinity of mAbpK SO57 variants to hFcRn can be modified without alteration of N-glycan structure and neutralization activity. Taken together, this study suggests that Fc-engineering of antirabies virus mAb can be applied to enhance the efficacy of therapeutic mAbs in plant expression systems.


Subject(s)
Histocompatibility Antigens Class I , Immunoglobulin G , Receptors, Fc , Humans , Antibodies, Monoclonal/metabolism , Histocompatibility Antigens Class I/genetics , Immunoglobulin G/biosynthesis , Immunoglobulin G/genetics , Polysaccharides , Receptors, Fc/genetics , Protein Engineering/methods , Plants/genetics , Plants/metabolism
4.
Mol Biotechnol ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491245

ABSTRACT

Sickle Cell Disease (SCD) is a severe genetic disorder causing vascular occlusion and pain by upregulating the adhesion molecule P-selectin on endothelial cells and platelets. It primarily affects infants and children, causing chronic pain, circulatory problems, organ damage, and complications. Thus, effective treatment and management are crucial to reduce SCD-related risks. Anti-P-selectin antibody Crizanlizumab (Crimab) has been used to treat SCD. In this study, the heavy and light chain (HC and LC) genes of anti-P-Selectin antibody Crimab were cloned into a plant expression binary vector. The HC gene was under control of the duplicated 35S promoter and nopaline synthase (NOS) terminator, whereas the LC gene was under control of the potato proteinase inhibitor II (PIN2) promoter and PIN2 terminator. Agrobacterium tumefaciens LBA4404 was used to transfer the genes into the tobacco (Nicotiana tabacum cv. Xanthi) plant. In plants the genomic PCR and western blot confirmed gene presence and expression of HC and LC Crimab proteins in the plant, respectively. Crimab was successfully purified from transgenic plant leaf using protein A affinity chromatography. In ELISA, plant-derived Crimab (CrimabP) had similar binding activity to P-selectin compared to mammalian-derived Crimab (CrimabM). In surface plasmon resonance, the KD (dissociation binding constant) and response unit values were lower and higher than CrimabP, respectively. Taken together, these results demonstrate that the transgenic plant can be applied to produce biofunctional therapeutic monoclonal antibody.

5.
Planta ; 259(1): 15, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38071691

ABSTRACT

MAIN CONCLUSION: LSC CO17-1AK and anti-HER2 VHH-FcK can be produced in a single plant and exhibit anti-tumor activities comparable to those of their respective parent antibodies. Recombinant monoclonal antibodies (mAbs) which can be applied to treat various cancers, are primarily produced using mammalian, insect, and bacteria cell culture systems. Plant expression systems have also been developed to produce antibodies. Plant expression systems present several advantages, including a lack of human pathogenic agents, efficient production costs, and easy large-scale production. In this study, we generated a transgenic plant expressing anti-colorectal cancer large single chain (LSC) CO17-1AK and anti-human epidermal growth factor receptor 2 (HER2) VHH-FcK mAbs by cross-pollinating plants expressing LSC CO17-1AK and anti-HER2 VHH-FcK, respectively. F1 siblings expressing both LSC CO17-1AK and anti-HER2 VHH-FcK were screened using polymerase chain reaction and Western-blot analyses. The cell enzyme-linked immunosorbent assay (Cell ELISA) confirmed the binding of LSC CO17-1AK and anti-HER2 VHH-FcK to target proteins in the SW620 human colorectal cancer and the SKBR-3 human breast cancer cell lines, respectively. The wound healing assay confirmed the inhibitory activity of both antibodies against SW620 and SKBR-3 cell migration, respectively. In conclusion, both LSC CO17-1AK mAb and anti-HER2 VHH-FcK can be produced in a single plant, achieve binding activities to SW620 and SKBR-3 cancer cells, and inhibitory activity against SW620 and SKBR-3 cell migration similar to their parental antibodies, respectively.


Subject(s)
Antibodies, Monoclonal , Mammals , Animals , Humans , Antibodies, Monoclonal/genetics , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Enzyme-Linked Immunosorbent Assay , Blotting, Western , Mammals/metabolism
6.
Sci Data ; 10(1): 911, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114492

ABSTRACT

The transgenic plant is a promising strategy for the production of highly valuable biotherapeutic proteins such as recombinant vaccines and antibodies. To achieve an efficient level of protein production, codon sequences and expression cassette elements need to be optimized. However, the systematical expression of recombinant proteins in plant biomass can generally be controlled for the production of therapeutic proteins after the generation of transgenic plants. Without understanding the transgene expression patterns in plant tissue, it is difficult to enhance further production levels. In this study, single-cell RNA-sequencing (scRNA-seq) analysis of transgenic tobacco (Nicotiana tabacum) leaf, expressing an immunotherapeutic llama antibody against breast cancer, anti-HER2 VHH-Fc, was conducted to obtain data on the expression pattern of tissue-specific cells. These high-quality scRNA-seq data enabled the identification of gene expression patterns by cell types, which can be applied to select the best cell types or tissues for the high production of these recombinant antibodies. These data provide a foundation to elucidate the mechanisms that regulate the biosynthesis of recombinant proteins in N. tabacum.


Subject(s)
Breast Neoplasms , Transcriptome , Female , Humans , Breast Neoplasms/metabolism , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Plant Cell Rep ; 42(7): 1203-1215, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269373

ABSTRACT

KEY MESSAGE: PAP-FcK and PSA-FcK prostate cancer antigenic proteins transiently co-expressed in plant induce their specific humoral immune responses in mice. Prostate-specific antigen (PSA) and prostatic acid phosphatase (PAP) have been considered as immunotherapeutic antigens for prostate cancer. The use of a single antigenic agent is unlikely to be effective in eliciting immunotherapeutic responses due to the heterogeneous and multifocal nature of prostate cancer. Thus, multiple antigens have been combined to enhance their anti-cancer effects. In the current study, PSA and PAP were fused to the crystallizable region (Fc region) of immunoglobulin G1 and tagged with KDEL, the endoplasmic reticulum (ER) retention signal motif, to generate PSA-FcK and PAP-FcK, respectively, and were transiently co-expressed in Nicotiana benthamiana. Western blot analysis confirmed the co-expression of PSA-FcK and PAP-FcK (PSA-FcK + PAP-FcK) with a 1:3 ratios in the co-infiltrated plants. PSA-FcK, PAP-FcK, and PSA-FcK + PAP-FcK proteins were successfully purified from N. benthamiana by protein A affinity chromatography. ELISA showed that anti-PAP and anti-PSA antibodies successfully detected PAP-FcK and PSA-FcK, respectively, and both detected PSA-FcK + PAP-FcK. Surface plasmon resonance (SPR) analysis confirmed the binding affinity of the plant-derived Fc fusion proteins to FcγRI/CD64. Furthermore, we also confirmed that mice injected with PSA-FcK + PAP-FcK produced both PSA- and PAP-specific IgGs, demonstrating their immunogenicity. This study suggested that the transient plant expression system can be applied to produce the dual-antigen Fc fusion protein (PSA-FcK + PAP-FcK) for prostate cancer immunotherapy.


Subject(s)
Cancer Vaccines , Prostatic Neoplasms , Animals , Humans , Male , Mice , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Cancer Vaccines/therapeutic use , Immunity , Prostate/metabolism , Prostate-Specific Antigen , Prostatic Neoplasms/therapy
8.
BMB Rep ; 56(7): 392-397, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37037672

ABSTRACT

In this study, recombinant Fc-fused Prostate acid phosphatase (PAP) proteins were produced in transgenic plants. PAP was fused to immunoglobulin (Ig) A and M Fc domain (PAP-IgA Fc and PAP-IgM Fc), which were tagged to the ER retention sequence KDEL to generate PAP-IgA FcK and PAP-IgM FcK. Agrobacteriummediated transformation was performed to produce transgenic tobacco plants expressing four recombinant proteins. Genomic PCR and RT-PCR analyses confirmed the transgene insertion and mRNA transcription of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK in tobacco plant leaves. Western blot confirmed the expression of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK proteins. SEC-HPLC and Bio-TEM analyses were performed to confirm the size and shape of the plant-derived recombinant PAP-Fc fusion proteins. In mice experiments, the plant-derived IgA and IgM Fc fused proteins induced production of total IgGs including IgG1 against PAP. This result suggests that IgA and IgM Fc fusion can be applied to produce recombinant PAP proteins as a prostate cancer vaccine in plant expression system. [BMB Reports 2023; 56(7): 392-397].


Subject(s)
Immunoglobulin A , Prostatic Neoplasms , Humans , Male , Animals , Mice , Immunoglobulin A/genetics , Immunoglobulin A/metabolism , Plant Proteins/genetics , Recombinant Proteins , Recombinant Fusion Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Immunity , Immunoglobulin M/genetics
9.
Biomol Ther (Seoul) ; 30(6): 546-552, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36263857

ABSTRACT

Epidermal cell adhesion molecule (EpCAM) is a tumor-associated antigen (TAA), which has been considered as a cancer vaccine candidate. The EpCAM protein fused to the fragment crystallizable region of immunoglobulin G (IgG) tagged with KDEL endoplasmic reticulum (ER) retention signal (EpCAM-FcK) has been successfully expressed in transgenic tobacco (Nicotiana tabacum cv. Xanthi) and purified from the plant leaf. In this study, we investigated the ability of the plant-derived EpCAM-FcK (EpCAM-FcKP) to elicit an immune response in vivo. The animal group injected with the EpCAM-FcKP showed a higher differentiated germinal center (GC) B cell population (~9%) compared with the animal group injected with the recombinant rhEpCAM-Fc chimera (EpCAM-FcM). The animal group injected with EpCAM-FcKP (~42%) had more differentiated T follicular helper cells (Tfh) than the animal group injected with EpCAM-FcM (~7%). This study demonstrated that the plant-derived EpCAM-FcK fusion antigenic protein induced a humoral immune response in mice.

10.
Mol Cells ; 44(10): 770-779, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34711693

ABSTRACT

Transgenic Arabidopsis thaliana expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using Agrobacterium-mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth. We generated T1 transformants and obtained homozygous T3 seeds from transgenic Arabidopsis to investigate the effect of KDEL on plant growth. The germination rate did not significantly differ between plants expressing mAb SO57 without KDEL (SO plant) and mAb SO57 with KDEL (SOK plant). The primary roots of SOK agar media grown plants were slightly shorter than those of SO plants. Transcriptomic analysis showed that expression of all 11 ER stress-related genes were not significantly changed in SOK plants relative to SO plants. SOK plants showed approximately three-fold higher mAb expression levels than those of SO plants. Consequently, the purified mAb amount per unit of SOK plant biomass was approximately three times higher than that of SO plants. A neutralization assay revealed that both plants exhibited efficient rapid fluorescent focus inhibition test values against the rabies virus relative to commercially available human rabies immunoglobulins. KDEL did not upregulate ER stress-related genes; therefore, the enhanced production of the mAb did not affect plant growth. Thus, KDEL fusion is recommended for enhancing mAb production in plant systems.


Subject(s)
Arabidopsis/chemistry , Endoplasmic Reticulum/metabolism , Plant Development/genetics , Plants, Genetically Modified/metabolism , Humans , Signal Transduction
11.
Biosensors (Basel) ; 11(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34436080

ABSTRACT

Circulating tumor cells (CTCs) are an indicator of metastatic progression and relapse. Since non-CTC cells such as red blood cells outnumber CTCs in the blood, the separation and enrichment of CTCs is key to improving their detection sensitivity. The ATP luminescence assay can measure intracellular ATP to detect cells quickly but has not yet been used for CTC detection in the blood because extracellular ATP in the blood, derived from non-CTCs, interferes with the measurement. Herein, we report on the improvement of the ATP luminescence assay for the detection of CTCs by separating and concentrating CTCs in the blood using a 3D printed immunomagnetic concentrator (3DPIC). Because of its high-aspect-ratio structure and resistance to high flow rates, 3DPIC allows cancer cells in 10 mL to be concentrated 100 times within minutes. This enables the ATP luminescence assay to detect as low as 10 cells in blood, thereby being about 10 times more sensitive than when commercial kits are used for CTC concentration. This is the first time that the ATP luminescence assay was used for the detection of cancer cells in blood. These results demonstrate the feasibility of 3DPIC as a concentrator to improve the detection limit of the ATP luminescence assay for the detection of CTCs.


Subject(s)
Luminescent Measurements , Printing, Three-Dimensional , Antineoplastic Combined Chemotherapy Protocols , Carboplatin , Cell Count , Cyclophosphamide , Humans , Luminescence , Neoplastic Cells, Circulating , Thiotepa
12.
J Microbiol Biotechnol ; 31(9): 1323-1329, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34261849

ABSTRACT

Micro-scale magnetic beads are widely used for isolation of proteins, DNA, and cells, leading to the development of in vitro diagnostics. Efficient isolation of target biomolecules is one of the keys to developing a simple and rapid point-of-care diagnostic. A zinc finger protein (ZFP) is a double-stranded (ds) DNA-binding domain, providing a useful scaffold for direct reading of the sequence information. Here, we utilized two engineered ZFPs (Stx2-268 and SEB-435) to detect the Shiga toxin (stx2) gene and the staphylococcal enterotoxin B (seb) gene present in foodborne pathogens, Escherichia coli O157 and Staphylococcus aureus, respectively. Engineered ZFPs are immobilized on a paramagnetic bead as a detection platform to efficiently isolate the target dsDNA-ZFP bound complex. The small paramagnetic beads provide a high surface area to volume ratio, allowing more ZFPs to be immobilized on the beads, which leads to increased target DNA detection. The fluorescence signal was measured upon ZFP binding to fluorophore-labeled target dsDNA. In this study, our system provided a detection limit of ≤ 60 fmol and demonstrated high specificity with multiplexing capability, suggesting a potential for development into a simple and reliable diagnostic for detecting multiple pathogens without target amplification.


Subject(s)
DNA, Bacterial/isolation & purification , Immobilized Proteins/chemistry , Microbiological Techniques/methods , Zinc Fingers , DNA, Bacterial/chemistry , Enterotoxins/genetics , Escherichia coli O157/genetics , Ferrosoferric Oxide/chemistry , Limit of Detection , Shiga Toxin 2/genetics , Staphylococcus aureus/genetics
13.
PeerJ ; 9: e10851, 2021.
Article in English | MEDLINE | ID: mdl-33868796

ABSTRACT

Immunization with thetumor-associated antigen GA733 glycoprotein, which is highly expressed in colorectal cancer, is considered to be a promising strategy for cancer prevention and treatment. We cloned a fusion gene of GA733 and immunoglobulin Fc fragment (GA733-Fc), and that of GA733-Fc and an endoplasmic reticulum retention motif (GA733-FcK) into the Cowpea mosaic virus (CPMV)-based transient plant expression vector, pEAQ-HT. Agrobacterium tumefaciens (LBA4404) transformed with the vectors pEAQ-HT-GA733-Fc and pEAQ-HT-GA733-FcK was infiltrated into the leaves of Nicotiana benthamiana plants. To optimize harvesting of leaf to express therapeutic glycoproteins both spatially and temporally, protein expression levels at various leaf positions (top, middle, and base) and days post-infiltration (dpi) were investigated. The GA733-Fc and GA733-FcK genes were detected in leaves at 1-10 dpi using PCR. As assessed by western blot, GA733-Fc and GA733-FcK were expressed at the highest levels in the top leaf position at 5 dpi, and GA733-FcK was expressed more than GA733-Fc. The proteins were successfully purified from infiltrated N. benthamiana leaves using protein A affinity chromatography. ELISA verified that an anti-GA733 antibody recognized both purified proteins. Thus, a functional GA733-Fc colorectal cancer vaccine protein can be transiently expressed using a CPMV virus-based vector, with an optimized expression time and leaf position post-infiltration.

14.
Plants (Basel) ; 9(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143243

ABSTRACT

The epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen and a potential target for tumor vaccine. The EpCAM is a cell-surface glycoprotein highly expressed in colorectal carcinomas. The objective of the present study is to develop an edible vaccine system through Agrobacterium-mediated transformation in Chinese cabbage (Brassica rapa). For the transformation, two plant expression vectors containing genes encoding for the EpCAM recombinant protein along with the fragment crystallizable (Fc) region of immunoglobulin M (IgM) and Joining (J)-chain tagged with the KDEL endoplasmic reticulum retention motif (J-chain K) were constructed. The vectors were successfully transformed and expressed in the Chinese cabbage individually using Agrobacterium. The transgenic Chinese cabbages were screened using genomic polymerase chain reaction (PCR) in T0 transgenic plant lines generated from both transformants. Similarly, the immunoblot analysis revealed the expression of recombinant proteins in the transformants. Further, the T1 transgenic plants were generated by selfing the transgenic plants (T0) carrying EpCAM-IgM Fc and J-chain K proteins, respectively. Subsequently, the T1 plants generated from EpCAM-IgM Fc and J-chain K transformants were crossed to generate F1 plants carrying both transgenes. The presence of both transgenes was validated using PCR in the F1 plants. In addition, the expression of Chinese cabbage-derived EpCAM-IgM Fc × J-chain K was evaluated using immunoblot and ELISA analyses in the F1 plants. The outcomes of the present study can be utilized for the development of a potential anti-cancer vaccine candidate using Chinese cabbage.

15.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977599

ABSTRACT

Pathogenic animal and human viruses present a growing and persistent threat to humans worldwide. Ebola virus (EBOV) causes zoonosis in humans. Here, two structurally different anti-Ebola 13F6 antibodies, recognizing the heavily glycosylated mucin-like domain (MLD) of the glycoprotein (GP), were expressed in transgenic Nicotiana tabacum plants and designed as inexpensive and effective diagnostic antibodies against Ebola virus disease (EVD). The first was anti-EBOV 13F6 full size antibody with heavy chain (HC) and light chain (LC) (monoclonal antibody, mAb 13F6-FULL), while the second was a large single-chain (LSC) antibody (mAb 13F6-LSC). mAb 13F6-LSC was constructed by linking the 13F6 LC variable region (VL) with the HC of mAb 13F6-FULL using a peptide linker and extended to the C-terminus using the endoplasmic reticulum (ER) retention motif KDEL. Agrobacterium-mediated plant transformation was employed to express the antibodies in N. tabacum. PCR, RT-PCR, and immunoblot analyses confirmed the gene insertion, transcription, and protein expression of these antibodies, respectively. The antibodies tagged with the KDEL motif displayed high-mannose type N-glycan structures and efficient binding to EBOV-like particles (VLPs). Thus, various forms of anti-EBOV plant-derived mAbs 13F6-FULL and LSC with efficient binding affinity to EBOV VLP can be produced in the plant system.


Subject(s)
Antibodies, Viral , Ebolavirus/immunology , Gene Expression , Nicotiana , Plants, Genetically Modified , Single-Chain Antibodies , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Ebolavirus/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/metabolism
16.
Int J Mol Sci ; 21(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764343

ABSTRACT

The antigen-antibody complex (AAC) has novel functions for immunomodulation, encouraging the application of diverse quaternary protein structures for vaccination. In this study, GA733 antigen and anti-GA733 antibody proteins were both co-expressed to obtain the AAC protein structures in a F1 plant obtained by crossing the plants expressing each protein. In F1 plant, the antigen and antibody assembled to form a large quaternary circular ACC structure (~30 nm). The large quaternary protein structures induced immune response to produce anticancer immunoglobulins G (IgGs) that are specific to the corresponding antigens in mouse. The serum containing the anticancer IgGs inhibited the human colorectal cancer cell growth in the xenograft nude mouse. Taken together, antigens and antibodies can be assembled to form AAC protein structures in plants. Plant crossing represents an alternative strategy for the formation of AAC vaccines that efficiently increases anticancer antibody production.


Subject(s)
Antibodies, Anti-Idiotypic/pharmacology , Antigen-Antibody Complex/immunology , Epithelial Cell Adhesion Molecule/immunology , Neoplasms/drug therapy , Plantibodies/pharmacology , Animals , Antibodies, Anti-Idiotypic/immunology , Antigen-Antibody Complex/pharmacology , Cancer Vaccines/immunology , Cell Adhesion Molecules/immunology , Humans , Immunity/drug effects , Immunity/immunology , Immunoglobulin G/immunology , Immunomodulation/drug effects , Immunomodulation/immunology , Mice , Neoplasms/immunology , Plantibodies/immunology , Protein Structure, Quaternary/drug effects , Xenograft Model Antitumor Assays
17.
PeerJ ; 8: e9084, 2020.
Article in English | MEDLINE | ID: mdl-32509448

ABSTRACT

BACKGROUND: Benzalkonium chloride (BAK), commonly used in glaucoma treatment, is an eye drop preservative with dose-dependent toxicity. Previous studies have observed the multi-functional benefits of angiogenin (ANG) against glaucoma. In our study, we evaluated ANG's cytoprotective effect on the trabecular meshwork (TM) damage induced by BAK. Additionally, we developed a plant-derived ANG fusion protein and evaluated its effect on TM structure and function. METHODS: We synthesized plant-derived ANG (ANG-FcK) by fuzing immunoglobulin G's Fc region and KDEL to conventional recombinant human ANG (Rh-ANG) purified from transgenic tobacco plants. We established a mouse model using BAK to look for degenerative changes in the TM, and to evaluate the protective effects of ANG-FcK and Rh-ANG. Intraocular pressure (IOP) was measured for 4 weeks and ultrastructural changes, deposition of fluorescent microbeads, type I and IV collagen, fibronectin, laminin and α-SMA expression were analyzed after the mice were euthanized. RESULTS: TM structural and functional degeneration were induced by 0.1% BAK instillation in mice. ANG co-treatment preserved TM outflow function, which we measured using IOP and a microbead tracer. ANG prevented phenotypic and ultrastructure changes, and that protective effect might be related to the anti-fibrosis mechanism. We observed a similar cytoprotective effect in the BAK-induced degenerative TM mouse model, suggesting that plant-derived ANG-FcK could be a promising glaucoma treatment.

18.
World J Mens Health ; 38(3): 385-396, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32202087

ABSTRACT

PURPOSE: In this study, we tested whether the resveratrol-enriched peanut sprout extracts cultivated with fermented sawdust medium (PSEFS) could suppress benign prostatic hyperplasia (BPH) in vitro and in vivo. MATERIALS AND METHODS: The mode of action of PSEFS was estimated by employing high-performance liquid chromatography analysis, MTT assay, cell counting, cell cycle analysis, immunoblots, and immunoprecipitation and electrophoretic mobility shift assay. In vivo efficacy of PSEFS was analyzed in BPH animal model via immunostaining and enzyme-linked immunosorbent assay. RESULTS: We selected the Yesan peanut sprout variety, which contains the highest level of resveratrol. The resveratrol levels in PSEFS were higher than those obtained with hydroponic technology. PSEFS treatment induced cell cycle arrest at the G1-phase by downregulating CDK4 and cyclin D1 via p21WAF1 induction in the RWPE-1 and WPMY prostate cells, thereby decreasing their proliferation. Treatment with PSEFS decreased ERK1/2 phosphorylation and increased JNK phosphorylation. The levels of DNA-bound transcription factors associated with proliferation (nuclear factor-κB, Sp-1, and AP-1) decreased upon PSEFS treatment in both prostate cells. Additionally, the levels of the molecular markers of BPH development (5α-reductase, androgen receptor, fibroblast growth factor, Bcl-2, and Bax) also changed by the addition of PSEFS. Finally, in a testosterone propionate-induced BPH model in rats, PSEFS administration attenuated the size, weight, and thickness of prostate tissues with no signs of death. CONCLUSIONS: These results showed that PSEFS inhibited BPH both in vitro and in vivo and might be useful in the development of a potential BPH therapy.

19.
Sci Rep ; 10(1): 3614, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32109236

ABSTRACT

In humans, parthenogenesis and androgenesis occur naturally in mature cystic ovarian teratomas and androgenetic complete hydatidiform moles (CHM), respectively. Our previous study has reported human parthenogenetic induced pluripotent stem cells from ovarian teratoma-derived fibroblasts and screening of imprinted genes using genome-wide DNA methylation analysis. However, due to the lack of the counterparts of uniparental cells, identification of new imprinted differentially methylated regions has been limited. CHM are inherited from only the paternal genome. In this study, we generated human androgenetic induced pluripotent stem cells (AgHiPSCs) from primary androgenetic fibroblasts derived from CHM. To investigate the pluripotency state of AgHiPSCs, we analyzed their cellular and molecular characteristics. We tested the DNA methylation status of imprinted genes using bisulfite sequencing and demonstrated the androgenetic identity of AgHiPSCs. AgHiPSCs might be an attractive alternative source of human androgenetic embryonic stem cells. Furthermore, AgHiPSCs can be used in regenerative medicine, for analysis of genomic imprinting, to study imprinting-related development, and for disease modeling in humans.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Paternal Inheritance , Cell Differentiation , Cells, Cultured , DNA Methylation , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Genomic Imprinting , Humans , Hydatidiform Mole/genetics , Hydatidiform Mole/metabolism , Hydatidiform Mole/physiopathology , Induced Pluripotent Stem Cells/metabolism , Male , Pregnancy , Reproduction, Asexual
20.
Int J Mol Sci ; 21(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079309

ABSTRACT

Overexpression of human epidermal growth factor receptor type 2 (HER2) is considered as a prognostic factor of breast cancer, which is positively associated with recurrence when cancer metastasizes to the lymph nodes. Here, we expressed the single variable domain on a heavy chain (VHH) form of anti-HER2 camelid single domain antibody in tobacco plants and compared its in vitro anticancer activities with the anti-HER2 full size antibody. The gene expression cassette containing anti-HER2 camelid single domain antibody VHH fused to human IgG Fc region with KDEL endoplasmic reticulum (ER) (VHH-FcK) was transferred into the tobacco plant via the Agrobacterium-mediated transformation. The transformants were screened with polymerase chain reaction and Western blot analyses. Enzyme-linked immunosorbent assay (ELISA) confirmed the binding of the purified anti-HER2 VHH-FcK to the HER2-positive breast cancer cell line, SK-BR-3. Migration assay results confirmed anticancer activity of the plant-derived anticancer camelid single chain antibody. Taken together, we confirmed the possibility of using anti-HER2 VHH-FcK as a therapeutic anticancer agent, which can be expressed and assembled and purified from a plant expression system as an alternative antibody production system.


Subject(s)
Antineoplastic Agents/immunology , Breast Neoplasms/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Nicotiana/genetics , Nicotiana/metabolism , Receptor, ErbB-2/immunology , Animals , Antineoplastic Agents/pharmacology , Breast , Camelids, New World , Cell Line, Tumor , Cell Movement , Female , Gene Expression Regulation, Neoplastic , Humans , Immunoglobulin G/immunology , Neoplasm Recurrence, Local , Plantibodies , Plants, Genetically Modified/genetics , Trastuzumab
SELECTION OF CITATIONS
SEARCH DETAIL