Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
Nature ; 629(8013): 951-956, 2024 May.
Article in English | MEDLINE | ID: mdl-38632403

ABSTRACT

Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain that is linked via a cysteine-rich domain to their 7-transmembrane domain1. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the extracellular ligand-binding domain to the G protein-coupling 7-transmembrane domain2. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging, we reveal distinct receptor conformations upon allosteric modulator and G protein binding.


Subject(s)
Ligands , Protein Domains , Receptor, Metabotropic Glutamate 5 , Humans , Allosteric Regulation/drug effects , Fluorescence , Models, Molecular , Protein Binding , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/chemistry , Receptor, Metabotropic Glutamate 5/metabolism , Single Molecule Imaging , Heterotrimeric GTP-Binding Proteins/metabolism
3.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106026

ABSTRACT

The µ-opioid receptor (µOR), a prototypical member of the G protein-coupled receptor (GPCR) family, is the molecular target of opioid analgesics such as morphine and fentanyl. Due to the limitations and severe side effects of currently available opioid drugs, there is considerable interest in developing novel modulators of µOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, are emerging as alternative therapeutics with clear advantages such as affinity and target selectivity. Here, we describe the nanobody NbE, which selectively binds to the µOR and acts as an antagonist. We functionally characterize NbE as an extracellular and genetically encoded µOR ligand and uncover the molecular basis for µOR antagonism by solving the cryo-EM structure of the NbE-µOR complex. NbE displays a unique ligand binding mode and achieves µOR selectivity by interactions with the orthosteric pocket and extracellular receptor loops. Based on a ß-hairpin loop formed by NbE that deeply inserts into the µOR and centers most binding contacts, we design short peptide analogues that retain µOR antagonism. The work illustrates the potential of nanobodies to uniquely engage with GPCRs and describes novel µOR ligands that can serve as a basis for therapeutic developments.

4.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37693614

ABSTRACT

Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain (ECD) that is linked via a cysteine-rich domain (CRDs) to their 7-transmembrane (TM) domain. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the ECD to the G protein-coupling TM. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging we reveal distinct receptor conformations upon allosteric modulator and G protein binding.

5.
Genome Biol ; 24(1): 182, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550700

ABSTRACT

BACKGROUND: Genetic variation in the human genome is a major determinant of individual disease risk, but the vast majority of missense variants have unknown etiological effects. Here, we present a robust learning framework for leveraging saturation mutagenesis experiments to construct accurate computational predictors of proteome-wide missense variant pathogenicity. RESULTS: We train cross-protein transfer (CPT) models using deep mutational scanning (DMS) data from only five proteins and achieve state-of-the-art performance on clinical variant interpretation for unseen proteins across the human proteome. We also improve predictive accuracy on DMS data from held-out proteins. High sensitivity is crucial for clinical applications and our model CPT-1 particularly excels in this regime. For instance, at 95% sensitivity of detecting human disease variants annotated in ClinVar, CPT-1 improves specificity to 68%, from 27% for ESM-1v and 55% for EVE. Furthermore, for genes not used to train REVEL, a supervised method widely used by clinicians, we show that CPT-1 compares favorably with REVEL. Our framework combines predictive features derived from general protein sequence models, vertebrate sequence alignments, and AlphaFold structures, and it is adaptable to the future inclusion of other sources of information. We find that vertebrate alignments, albeit rather shallow with only 100 genomes, provide a strong signal for variant pathogenicity prediction that is complementary to recent deep learning-based models trained on massive amounts of protein sequence data. We release predictions for all possible missense variants in 90% of human genes. CONCLUSIONS: Our results demonstrate the utility of mutational scanning data for learning properties of variants that transfer to unseen proteins.


Subject(s)
Machine Learning , Proteome , Humans , Proteome/genetics , Amino Acid Sequence , Mutation , Mutation, Missense , Computational Biology/methods
6.
Proc Natl Acad Sci U S A ; 119(46): e2210247119, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36343260

ABSTRACT

Genetic variants in SLC22A5, encoding the membrane carnitine transporter OCTN2, cause the rare metabolic disorder Carnitine Transporter Deficiency (CTD). CTD is potentially lethal but actionable if detected early, with confirmatory diagnosis involving sequencing of SLC22A5. Interpretation of missense variants of uncertain significance (VUSs) is a major challenge. In this study, we sought to characterize the largest set to date (n = 150) of OCTN2 variants identified in diverse ancestral populations, with the goals of furthering our understanding of the mechanisms leading to OCTN2 loss-of-function (LOF) and creating a protein-specific variant effect prediction model for OCTN2 function. Uptake assays with 14C-carnitine revealed that 105 variants (70%) significantly reduced transport of carnitine compared to wild-type OCTN2, and 37 variants (25%) severely reduced function to less than 20%. All ancestral populations harbored LOF variants; 62% of green fluorescent protein (GFP)-tagged variants impaired OCTN2 localization to the plasma membrane of human embryonic kidney (HEK293T) cells, and subcellular localization significantly associated with function, revealing a major LOF mechanism of interest for CTD. With these data, we trained a model to classify variants as functional (>20% function) or LOF (<20% function). Our model outperformed existing state-of-the-art methods as evaluated by multiple performance metrics, with mean area under the receiver operating characteristic curve (AUROC) of 0.895 ± 0.025. In summary, in this study we generated a rich dataset of OCTN2 variant function and localization, revealed important disease-causing mechanisms, and improved upon machine learning-based prediction of OCTN2 variant function to aid in variant interpretation in the diagnosis and treatment of CTD.


Subject(s)
Carnitine , Organic Cation Transport Proteins , Humans , Solute Carrier Family 22 Member 5/genetics , Solute Carrier Family 22 Member 5/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , HEK293 Cells , Carnitine/genetics , Carnitine/metabolism , Genomics
7.
Pac Symp Biocomput ; 27: 22-33, 2022.
Article in English | MEDLINE | ID: mdl-34890133

ABSTRACT

There is significant interest in developing machine learning methods to model protein-ligand interactions but a scarcity of experimentally resolved protein-ligand structures to learn from. Protein self-contacts are a much larger source of structural data that could be leveraged, but currently it is not well understood how this data source differs from the target domain. Here, we characterize the 3D geometric patterns of protein self-contacts as probability distributions. We then present a flexible statistical framework to assess the transferability of these patterns to protein-ligand contacts. We observe that the level of transferability from protein self-contacts to protein-ligand contacts depends on contact type, with many contact types exhibiting high transferability. We then demonstrate the potential of leveraging information from these geometric patterns to aid in ligand pose-selection problems in protein-ligand docking. We publicly release our extracted data on geometric interaction patterns to enable further exploration of this problem.


Subject(s)
Computational Biology , Proteins , Humans , Ligands , Machine Learning , Protein Binding , Proteins/metabolism
8.
Elife ; 92020 04 20.
Article in English | MEDLINE | ID: mdl-32310757

ABSTRACT

Among coupled exchangers, CLCs uniquely catalyze the exchange of oppositely charged ions (Cl- for H+). Transport-cycle models to describe and explain this unusual mechanism have been proposed based on known CLC structures. While the proposed models harmonize with many experimental findings, gaps and inconsistencies in our understanding have remained. One limitation has been that global conformational change - which occurs in all conventional transporter mechanisms - has not been observed in any high-resolution structure. Here, we describe the 2.6 Å structure of a CLC mutant designed to mimic the fully H+-loaded transporter. This structure reveals a global conformational change to improve accessibility for the Cl- substrate from the extracellular side and new conformations for two key glutamate residues. Together with DEER measurements, MD simulations, and functional studies, this new structure provides evidence for a unified model of H+/Cl- transport that reconciles existing data on all CLC-type proteins.


Cells are shielded from harmful molecules and other threats by a thin, flexible layer called the membrane. However, this barrier also prevents chloride, sodium, protons and other ions from moving in or out of the cell. Channels and transporters are two types of membrane proteins that form passageways for these charged particles. Channels let ions flow freely from one side of the membrane to the other. To do so, these proteins change their three-dimensional shape to open or close as needed. On the other hand, transporters actively pump ions across the membrane to allow the charged particles to accumulate on one side. The shape changes needed for that type of movement are different: the transporters have to open a passageway on one side of the membrane while closing it on the other side, alternating openings to one side or the other. In general, channels and transporters are not related to each other, but one exception is a group called CLCs proteins. Present in many organisms, this family contains a mixture of channels and transporters. For example, humans have nine CLC proteins: four are channels that allow chloride ions in and out, and five are 'exchange transporters' that make protons and chloride ions cross the membrane in opposite directions. These proteins let one type of charged particle move freely across the membrane, which generates energy that the transporter then uses to actively pump the other ion in the direction needed by the cell. Yet, the exact three-dimensional changes required for CLC transporters and channels to perform their roles are still unknown. To investigate this question, Chavan, Cheng et al. harnessed a technique called X-ray crystallography, which allows scientists to look at biological molecules at the level of the atom. This was paired with other methods to examine a CLC mutant that adopts the shape of a normal CLC transporter when it is loaded with a proton. The experiments revealed how various elements in the transporter move relative to each other to adopt a structure that allows protons and chloride ions to enter the protein from opposite sides of the membrane, using separate pathways. While obtained on a bacterial CLC, these results can be applied to other CLC channels and transporters (including those in humans), shedding light on how this family transports charged particles across membranes. From bone diseases to certain types of seizures, many human conditions are associated with poorly functioning CLCs. Understanding the way these structures change their shapes to perform their roles could help to design new therapies for these health problems.


Subject(s)
Antiporters/chemistry , Chlorides/metabolism , Escherichia coli Proteins/chemistry , Antiporters/genetics , Crystallography, X-Ray , Escherichia coli Proteins/genetics , Ion Transport , Mutation , Protein Conformation , Proton Pumps/physiology , Protons , Spectrum Analysis
10.
Nature ; 566(7742): 79-84, 2019 02.
Article in English | MEDLINE | ID: mdl-30675062

ABSTRACT

Metabotropic glutamate receptors are family C G-protein-coupled receptors. They form obligate dimers and possess extracellular ligand-binding Venus flytrap domains, which are linked by cysteine-rich domains to their 7-transmembrane domains. Spectroscopic studies show that signalling is a dynamic process, in which large-scale conformational changes underlie the transmission of signals from the extracellular Venus flytraps to the G protein-coupling domains-the 7-transmembrane domains-in the membrane. Here, using a combination of X-ray crystallography, cryo-electron microscopy and signalling studies, we present a structural framework for the activation mechanism of metabotropic glutamate receptor subtype 5. Our results show that agonist binding at the Venus flytraps leads to a compaction of the intersubunit dimer interface, thereby bringing the cysteine-rich domains into close proximity. Interactions between the cysteine-rich domains and the second extracellular loops of the receptor enable the rigid-body repositioning of the 7-transmembrane domains, which come into contact with each other to initiate signalling.


Subject(s)
Receptor, Metabotropic Glutamate 5/chemistry , Receptor, Metabotropic Glutamate 5/metabolism , Signal Transduction , Allosteric Regulation , Cryoelectron Microscopy , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Humans , Ligands , Models, Molecular , Protein Domains , Protein Stability , Receptor, Metabotropic Glutamate 5/ultrastructure
11.
Nat Commun ; 9(1): 3712, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213947

ABSTRACT

Single-particle cryo-electron microscopy (cryo-EM) has recently enabled high-resolution structure determination of numerous biological macromolecular complexes. Despite this progress, the application of high-resolution cryo-EM to G protein coupled receptors (GPCRs) in complex with heterotrimeric G proteins remains challenging, owning to both the relative small size and the limited stability of these assemblies. Here we describe the development of antibody fragments that bind and stabilize GPCR-G protein complexes for the application of high-resolution cryo-EM. One antibody in particular, mAb16, stabilizes GPCR/G-protein complexes by recognizing an interface between Gα and Gßγ subunits in the heterotrimer, and confers resistance to GTPγS-triggered dissociation. The unique recognition mode of this antibody makes it possible to transfer its binding and stabilizing effect to other G-protein subtypes through minimal protein engineering. This antibody fragment is thus a broadly applicable tool for structural studies of GPCR/G-protein complexes.


Subject(s)
GTP-Binding Proteins/chemistry , Immunoglobulin Fragments/chemistry , Receptors, G-Protein-Coupled/chemistry , Antibodies, Monoclonal/chemistry , Binding Sites , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Macromolecular Substances/chemistry , Nucleotides/chemistry , Protein Binding , Protein Domains , Protein Engineering/methods , Protein Structure, Secondary , Rhodopsin/chemistry , Signal Transduction
12.
Nature ; 558(7711): 547-552, 2018 06.
Article in English | MEDLINE | ID: mdl-29899455

ABSTRACT

The µ-opioid receptor (µOR) is a G-protein-coupled receptor (GPCR) and the target of most clinically and recreationally used opioids. The induced positive effects of analgesia and euphoria are mediated by µOR signalling through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Here we present the 3.5 Å resolution cryo-electron microscopy structure of the µOR bound to the agonist peptide DAMGO and nucleotide-free Gi. DAMGO occupies the morphinan ligand pocket, with its N terminus interacting with conserved receptor residues and its C terminus engaging regions important for opioid-ligand selectivity. Comparison of the µOR-Gi complex to previously determined structures of other GPCRs bound to the stimulatory G protein Gs reveals differences in the position of transmembrane receptor helix 6 and in the interactions between the G protein α-subunit and the receptor core. Together, these results shed light on the structural features that contribute to the Gi protein-coupling specificity of the µOR.


Subject(s)
Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/ultrastructure , Animals , Binding Sites , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Female , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , Humans , Ligands , Mice , Mice, Inbred BALB C , Molecular Dynamics Simulation , Morphinans/chemistry , Morphinans/metabolism , Protein Stability/drug effects , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/chemistry , Substrate Specificity
13.
Nature ; 532(7600): 527-30, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27042935

ABSTRACT

The human σ1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the σ1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the σ1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human σ1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like ß-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein.


Subject(s)
Receptors, sigma/chemistry , Benzamides/chemistry , Benzamides/metabolism , Binding Sites , Crystallography, X-Ray , Endoplasmic Reticulum/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Intracellular Membranes/metabolism , Isoxazoles/chemistry , Isoxazoles/metabolism , Ligands , Models, Molecular , Piperidines/chemistry , Piperidines/metabolism , Protein Structure, Tertiary , Pyridines/chemistry , Pyridines/metabolism , Receptors, sigma/metabolism , Substrate Specificity , Sigma-1 Receptor
14.
Protein Sci ; 25(3): 689-701, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26701219

ABSTRACT

The N-end rule pathway uses an evolutionarily conserved mechanism in bacteria and eukaryotes that marks proteins for degradation by ATP-dependent chaperones and proteases such as the Clp chaperones and proteases. Specific N-terminal amino acids (N-degrons) are sufficient to target substrates for degradation. In bacteria, the ClpS adaptor binds and delivers N-end rule substrates for their degradation upon association with the ClpA/P chaperone/protease. Here, we report the first crystal structure, solved at 2.7 Å resolution, of a eukaryotic homolog of bacterial ClpS from the malaria apicomplexan parasite Plasmodium falciparum (Pfal). Despite limited sequence identity, Plasmodium ClpS is very similar to bacterial ClpS. Akin to its bacterial orthologs, plasmodial ClpS harbors a preformed hydrophobic pocket whose geometry and chemical properties are compatible with the binding of N-degrons. However, while the N-degron binding pocket in bacterial ClpS structures is open and accessible, the corresponding pocket in Plasmodium ClpS is occluded by a conserved surface loop that acts as a latch. Despite the closed conformation observed in the crystal, we show that, in solution, Pfal-ClpS binds and discriminates peptides mimicking bona fide N-end rule substrates. The presence of an apicoplast targeting peptide suggests that Pfal-ClpS localizes to this plastid-like organelle characteristic of all Apicomplexa and hosting most of its Clp machinery. By analogy with the related ClpS1 from plant chloroplasts and cyanobacteria, Plasmodium ClpS likely functions in association with ClpC in the apicoplast. Our findings open new venues for the design of novel anti-malarial drugs aimed at disrupting parasite-specific protein quality control pathways.


Subject(s)
Endopeptidase Clp/chemistry , Plasmodium falciparum/chemistry , Plasmodium falciparum/enzymology , Amino Acid Sequence , Crystallography, X-Ray , Endopeptidase Clp/metabolism , Humans , Malaria, Falciparum/parasitology , Models, Molecular , Plasmodium falciparum/metabolism , Protein Conformation , Sequence Alignment , Substrate Specificity
15.
Protein Sci ; 24(9): 1508-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26130467

ABSTRACT

Caseinolytic chaperones and proteases (Clp) belong to the AAA+ protein superfamily and are part of the protein quality control machinery in cells. The eukaryotic parasite Plasmodium falciparum, the causative agent of malaria, has evolved an elaborate network of Clp proteins including two distinct ClpB ATPases. ClpB1 and ClpB2 are involved in different aspects of parasitic proteostasis. ClpB1 is present in the apicoplast, a parasite-specific and plastid-like organelle hosting various metabolic pathways necessary for parasite growth. ClpB2 localizes to the parasitophorous vacuole membrane where it drives protein export as core subunit of a parasite-derived protein secretion complex, the Plasmodium Translocon of Exported proteins (PTEX); this process is central to parasite virulence and survival in the human host. The functional associations of these two chaperones with parasite-specific metabolism and protein secretion make them prime drug targets. ClpB proteins function as unfoldases and disaggregases and share a common architecture consisting of four domains-a variable N-terminal domain that binds different protein substrates, followed by two highly conserved catalytic ATPase domains, and a C-terminal domain. Here, we report and compare the first crystal structures of the N terminal domains of ClpB1 and ClpB2 from Plasmodium and analyze their molecular surfaces. Solution scattering analysis of the N domain of ClpB2 shows that the average solution conformation is similar to the crystalline structure. These structures represent the first step towards the characterization of these two malarial chaperones and the reconstitution of the entire PTEX to aid structure-based design of novel anti-malarial drugs.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Antimalarials/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Amino Acid Sequence , Antimalarials/pharmacology , Crystallography, X-Ray , Drug Design , Humans , Models, Molecular , Molecular Chaperones/chemistry , Molecular Sequence Data , Molecular Targeted Therapy , Plasmodium falciparum/genetics , Protein Folding , Protein Structure, Secondary , Protein Transport
16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 928-40, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25849403

ABSTRACT

X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.


Subject(s)
Crystallization/instrumentation , Crystallography, X-Ray/instrumentation , Lab-On-A-Chip Devices , Muramidase/chemistry , Animals , Chickens , Equipment Design , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...