Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 141(3): 698-712, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29365063

ABSTRACT

Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria.


Subject(s)
Mutation/genetics , Nerve Tissue Proteins/genetics , Polymicrogyria/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Child , Child, Preschool , DNA Mutational Analysis , Excitatory Amino Acid Agonists/pharmacology , Family Health , Female , Glutamic Acid/pharmacology , Glycine/metabolism , Glycine/pharmacology , HEK293 Cells , Humans , Infant , Magnetic Resonance Imaging , Male , Membrane Potentials/genetics , Models, Molecular , Mutagenesis/genetics , N-Methylaspartate/pharmacology , Patch-Clamp Techniques , Polymicrogyria/diagnostic imaging , Rats , Transfection
2.
Mol Genet Metab Rep ; 10: 8-10, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27995076

ABSTRACT

Trifunctional protein deficiency/Long-chain hydroxyacyl-CoA dehydrogenase deficiency (LCHAD/TFP) deficiency is a disorder of fatty acid oxidation and ketogenesis. Severe neonatal lactic acidosis, cardiomyopathy, and hepatic dysfunction are caused by the accumulation of toxic long-chain acylcarnitines. The feasibility of umbilical cord blood use in screening for acylcarnitine analysis and free carnitine has been hypothesized but not reported in LCHAD/TFP neonates. We present a 4 week old female who was at risk of inheriting LCHAD/TFP deficiency and was diagnosed at the time of delivery using umbilical cord blood. Umbilical cord blood was collected at delivery and sent for acylcarnitine analysis. Treatment was started immediately. Acylcarnitine analysis demonstrated findings that are consistent with a biochemical diagnosis of LCHAD/TFP deficiency. Patients with LCHAD/TFP deficiency should have treatment initiated as early as possible to avoid acute decompensation and minimize the long-term complications of the disorder including cardiomyopathy. In pregnancies at risk of having a child with LCHAD/TFP deficiency, umbilical cord blood sample is an efficient method to diagnose an inborn error of metabolism such as LCHAD/TFP deficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...