Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
J Cereb Blood Flow Metab ; 44(5): 680-688, 2024 May.
Article En | MEDLINE | ID: mdl-38420777

The accumulation of the microtubule-associated tau protein in and around blood vessels contributes to brain microvascular dysfunction through mechanisms that are incompletely understood. Delivery of nutrients to active neurons in the brain relies on capillary calcium (Ca2+) signals to direct blood flow. The initiation and amplification of endothelial cell Ca2+ signals require an intact microtubule cytoskeleton. Since tau accumulation in endothelial cells disrupts native microtubule stability, we reasoned that tau-induced microtubule destabilization would impair endothelial Ca2+ signaling. We tested the hypothesis that tau disrupts the regulation of local cerebral blood flow by reducing endothelial cell Ca2+ signals and endothelial-dependent vasodilation. We used a pathogenic soluble tau peptide (T-peptide) model of tau aggregation and mice with genetically encoded endothelial Ca2+ sensors to measure cerebrovascular endothelial responses to tau exposure. T-peptide significantly attenuated endothelial Ca2+ activity and cortical capillary blood flow in vivo. Further, T-peptide application constricted pressurized cerebral arteries and inhibited endothelium-dependent vasodilation. This study demonstrates that pathogenic tau alters cerebrovascular function through direct attenuation of endothelial Ca2+ signaling and endothelium-dependent vasodilation.


Calcium Signaling , Cerebrovascular Circulation , Microvessels , Vasodilation , tau Proteins , Animals , Vasodilation/drug effects , Calcium Signaling/drug effects , Mice , tau Proteins/metabolism , Microvessels/metabolism , Microvessels/drug effects , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Brain/blood supply , Brain/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Calcium/metabolism
2.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article En | MEDLINE | ID: mdl-38003472

Functional hyperemia-activity-dependent increases in local blood perfusion-underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling. Here, using EC-specific EGFR-knockout (KO) mice, we directly examined the role of endothelial EGFR signaling in functional hyperemia, assessed by measuring increases in cerebral blood flow in response to contralateral whisker stimulation using laser Doppler flowmetry. Molecular characterizations showed that EGFR expression was dramatically decreased in freshly isolated capillaries from EC-EGFR-KO mice, as expected. Notably, whisker stimulation-induced functional hyperemia was significantly impaired in these mice, an effect that was rescued by administration of PIP2, but not by the EGFR ligand, HB-EGF. These data suggest that the deletion of the EGFR specifically in ECs attenuates functional hyperemia, likely via depleting PIP2 and subsequently incapacitating Kir2.1 channel functionality in capillary ECs. Thus, our study underscores the role of endothelial EGFR signaling in functional hyperemia of the brain.


Endothelial Cells , Hyperemia , Mice , Animals , Endothelial Cells/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Brain/metabolism , EGF Family of Proteins/metabolism , EGF Family of Proteins/pharmacology , Epidermal Growth Factor/metabolism
3.
bioRxiv ; 2023 Sep 17.
Article En | MEDLINE | ID: mdl-37745396

Functional hyperemia - activity-dependent increases in local blood perfusion - underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling. Here, using EC-specific EGFR-knockout (KO) mice, we directly examined the role of endothelial EGFR signaling in functional hyperemia, assessed by measuring increases in cerebral blood flow in response to contralateral whisker stimulation using laser Doppler flowmetry. Molecular characterizations showed that EGFR expression was dramatically decreased in freshly isolated capillaries from EC-EGFR-KO mice, as expected. Notably, whisker stimulation-induced functional hyperemia was significantly impaired in these mice, an effect that was rescued by exogenous administration of PIP2, but not by the EGFR ligand, HB-EGF. These data suggest that the deletion of the EGFR specifically in ECs depletes PIP2 and attenuates functional hyperemia, underscoring the central role of the endothelial EGFR signaling in cerebral blood flow regulation.

4.
bioRxiv ; 2023 Sep 11.
Article En | MEDLINE | ID: mdl-37609200

The accumulation of the microtubule-associated tau protein in and around blood vessels contributes to brain microvascular dysfunction through mechanisms that are incompletely understood. Delivery of nutrients to active neurons in the brain relies on capillary inositol 1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca2+) signals to direct blood flow. The initiation and amplification of endothelial cell IP3R-mediated Ca2+ signals requires an intact microtubule cytoskeleton. Since tau accumulation in endothelial cells disrupts native microtubule stability, we reasoned that tau-induced microtubule destabilization would impair endothelial IP3-evoked Ca2+ signaling. We tested the hypothesis that tau disrupts the regulation of local cerebral blood flow by reducing endothelial cell Ca2+ signals and endothelial-dependent vasodilation. We used a pathogenic soluble tau peptide (T-peptide) model of tau aggregation and mice with genetically encoded endothelial Ca2+ sensors to measure cerebrovascular endothelial responses to tau exposure. T-peptide significantly attenuated endothelial Ca2+ activity and cortical capillary blood flow in vivo within 120 seconds. Further, T-peptide application constricted pressurized cerebral arteries and inhibited endothelium-dependent vasodilation. This study demonstrates that pathogenic tau alters cerebrovascular function through direct attenuation of endothelial Ca2+ signaling and endothelium-dependent vasodilation.

5.
Sci Signal ; 15(727): eabl5405, 2022 03 29.
Article En | MEDLINE | ID: mdl-35349300

The dense network of capillaries composed of capillary endothelial cells (cECs) and pericytes lies in close proximity to all neurons, ideally positioning it to sense neuron- and glial-derived compounds that enhance regional and global cerebral perfusion. The membrane potential (VM) of vascular cells serves as the physiological bridge that translates brain activity into vascular function. In other beds, the ATP-sensitive K+ (KATP) channel regulates VM in vascular smooth muscle, which is absent in the capillary network. Here, with transgenic mice that expressed a dominant-negative mutant of the pore-forming Kir6.1 subunit specifically in brain cECs or pericytes, we demonstrated that KATP channels were present in both cell types and robustly controlled VM. We further showed that the signaling nucleotide adenosine acted through A2A receptors and the Gαs/cAMP/PKA pathway to activate capillary KATP channels. Moreover, KATP channel stimulation in vivo increased cerebral blood flow (CBF), an effect that was blunted by expression of the dominant-negative Kir6.1 mutant in either capillary cell type. These findings establish an important role for KATP channels in cECs and pericytes in the regulation of CBF.


Endothelial Cells , Pericytes , Adenosine , Adenosine Triphosphate/metabolism , Animals , Capillaries/metabolism , Endothelial Cells/metabolism , KATP Channels/genetics , KATP Channels/metabolism , Mice , Pericytes/metabolism
6.
J Clin Invest ; 131(18)2021 09 15.
Article En | MEDLINE | ID: mdl-34351870

Dementia resulting from small vessel diseases (SVDs) of the brain is an emerging epidemic for which there is no treatment. Hypertension is the major risk factor for SVDs, but how hypertension damages the brain microcirculation is unclear. Here, we show that chronic hypertension in a mouse model progressively disrupts on-demand delivery of blood to metabolically active areas of the brain (functional hyperemia) through diminished activity of the capillary endothelial cell inward-rectifier potassium channel, Kir2.1. Despite similar efficacy in reducing blood pressure, amlodipine, a voltage-dependent calcium-channel blocker, prevented hypertension-related damage to functional hyperemia whereas losartan, an angiotensin II type 1 receptor blocker, did not. We attribute this drug class effect to losartan-induced aldosterone breakthrough, a phenomenon triggered by pharmacological interruption of the renin-angiotensin pathway leading to elevated plasma aldosterone levels. This hypothesis is supported by the finding that combining losartan with the aldosterone receptor antagonist eplerenone prevented the hypertension-related decline in functional hyperemia. Collectively, these data suggest Kir2.1 as a possible therapeutic target in vascular dementia and indicate that concurrent mineralocorticoid aldosterone receptor blockade may aid in protecting against late-life cognitive decline in hypertensive patients treated with angiotensin II type 1 receptor blockers.


Antihypertensive Agents/therapeutic use , Cerebral Small Vessel Diseases/drug therapy , Cerebral Small Vessel Diseases/etiology , Hyperemia/drug therapy , Hypertension/complications , Hypertension/drug therapy , Amlodipine/therapeutic use , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Antihypertensive Agents/administration & dosage , Cerebral Small Vessel Diseases/physiopathology , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Dementia, Vascular/drug therapy , Dementia, Vascular/etiology , Dementia, Vascular/physiopathology , Disease Models, Animal , Drug Therapy, Combination , Eplerenone/administration & dosage , Eplerenone/therapeutic use , Heart Disease Risk Factors , Humans , Hyperemia/physiopathology , Losartan/administration & dosage , Losartan/therapeutic use , Male , Mice , Microvessels/drug effects , Microvessels/physiopathology , Potassium Channels, Inwardly Rectifying/drug effects , Potassium Channels, Inwardly Rectifying/physiology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology
7.
Front Physiol ; 12: 688468, 2021.
Article En | MEDLINE | ID: mdl-34168571

Subarachnoid hemorrhage (SAH) is a common form of hemorrhagic stroke associated with high rates of mortality and severe disability. SAH patients often develop severe neurological deficits days after ictus, events attributed to a phenomenon referred to as delayed cerebral ischemia (DCI). Recent studies indicate that SAH-induced DCI results from a multitude of cerebral circulatory disturbances including cerebral autoregulation malfunction. Cerebral autoregulation incorporates the influence of blood pressure (BP) on arterial diameter in the homeostatic regulation of cerebral blood flow (CBF), which is necessary for maintaining constant brain perfusion during physiological swings in systemic BP. In this study, we quantitatively examined the impact of SAH on cerebral autoregulation using a mouse endovascular perforation model and a newly developed approach combining absolute and relative CBF measurements. This method enables a direct quantitative comparison of cerebral autoregulation between individual animals (e.g., SAH vs. control or sham-operated mice), which cannot be done solely using relative CBF changes by laser Doppler flowmetry. Here, absolute CBF was measured via injection of fluorescent microspheres at a baseline BP. In separate groups of animals, in vivo laser Doppler flowmetry was used to measure relative CBF changes over a range of BP using phlebotomy and the pressor phenylephrine to lower and raise BP, respectively. Absolute CBF measurements from microspheres were then used to calibrate laser Doppler measurements to calculate the relationship between CBF and BP, i.e., "cerebral autoregulation curves." Un-operated and sham-operated groups exhibited similar cerebral autoregulatory curves, showing comparable levels of relatively constant CBF over a range of BP from ~80 mmHg to ~130 mmHg. In contrast, SAH animals exhibited a narrower autoregulatory range of BP, which was primarily due to a decrease in the upper limit of BP whereby cerebral autoregulation was maintained. Importantly, SAH animals also exhibited a marked decrease in CBF throughout the entire range of BP. In sum, this study provides evidence of the dramatic reduction in cortical CBF and the diminished range of autoregulation after SAH. Furthermore, this novel methodology should pave the way for future studies examining pathological mechanisms and/or therapeutic strategies targeting impaired cerebral autoregulation, a pathology common to many cardiovascular and cerebrovascular disorders.

8.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article En | MEDLINE | ID: mdl-33875602

Cerebral small vessel diseases (SVDs) are a central link between stroke and dementia-two comorbidities without specific treatments. Despite the emerging consensus that SVDs are initiated in the endothelium, the early mechanisms remain largely unknown. Deficits in on-demand delivery of blood to active brain regions (functional hyperemia) are early manifestations of the underlying pathogenesis. The capillary endothelial cell strong inward-rectifier K+ channel Kir2.1, which senses neuronal activity and initiates a propagating electrical signal that dilates upstream arterioles, is a cornerstone of functional hyperemia. Here, using a genetic SVD mouse model, we show that impaired functional hyperemia is caused by diminished Kir2.1 channel activity. We link Kir2.1 deactivation to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane phospholipid essential for Kir2.1 activity. Systemic injection of soluble PIP2 rapidly restored functional hyperemia in SVD mice, suggesting a possible strategy for rescuing functional hyperemia in brain disorders in which blood flow is disturbed.


Cerebral Small Vessel Diseases/etiology , Cerebrovascular Circulation , Hyperemia/etiology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Animals , Cerebral Small Vessel Diseases/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Hyperemia/metabolism , Male , Mice, Transgenic
9.
In Vivo ; 34(6): 3233-3240, 2020.
Article En | MEDLINE | ID: mdl-33144428

BACKGROUND/AIM: Odontogenic diseases are diagnosed based on clinical course, imaging, and histopathology. However, a definitive diagnosis is not always possible. PATIENTS AND METHODS: We analyzed whole exons of SMO, BRAF, PTCH1 and GNAS using next-generation sequencing (NGS) in 18 patients. RESULTS: Of the 6 patients with ameloblastoma, 2 patients had the same missense mutation in BRAF, and 1 patient with peripheral ameloblastoma had a missense mutation in PTCH1. Of the 7 patients with odontogenic keratocyst, 4 patients had a missense mutation in PTCH1, 2 patients had missense mutations in BRAF, and 1 patient had a missense mutation in SMO. The patient with odontoma had missense mutations in SMO, BRAF and PTCH1. One patient with cement-osseous dysplasia had missense mutations in SMO and PTCH1. The patient with adenomatoid odontogenic tumor had missense mutations in SMO. CONCLUSION: Whole exome sequencing of the above genes by NGS would be useful for the differential diagnosis of odontogenic diseases.


Ameloblastoma , Odontogenic Cysts , Odontogenic Tumors , Chromogranins , GTP-Binding Protein alpha Subunits, Gs/genetics , Humans , Mutation , Patched-1 Receptor/genetics , Proto-Oncogene Proteins B-raf/genetics , Smoothened Receptor , Exome Sequencing
10.
Int J Mol Sci ; 21(17)2020 Aug 31.
Article En | MEDLINE | ID: mdl-32878053

Administration of cetuximab (C-mab) in combination with paclitaxel (PTX) has been used for patients with head and neck squamous cell carcinoma (SCC) clinically. In this study, we attempted to clarify the molecular mechanisms of the enhancing anticancer effect of C-mab combined with PTX on oral SCC cells in vitro. We used two oral SCC cells (HSC4, OSC19) and A431 cells. PTX alone inhibited cell growth in all cells in a concentration-dependent manner. C-mab alone inhibited the growth of A431 and OSC19 cells at low concentrations, but inhibited the growth of HSC4 cells very weakly, even at high concentrations. A combined effect of the two drugs was moderate on A431 cells, but slight on HSC4 and OSC19 cells. A low concentration of PTX enhanced the antibody-dependent cellular cytotoxicity (ADCC) induced by C-mab in all of the cells tested. PTX slightly enhanced the anticancer effect of C-mab in this ADCC model on A431 and HSC4 cells, and markedly enhanced the anticancer effect of C-mab on OSC19 cells. These results indicated that PTX potentiated the anticancer effect of C-mab through enhancing the ADCC in oral SCC cells.


Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Squamous Cell/drug therapy , Cetuximab/pharmacology , Mouth Neoplasms/drug therapy , Paclitaxel/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Cell Proliferation , Drug Synergism , Humans , In Vitro Techniques , Mouth Neoplasms/immunology , Mouth Neoplasms/pathology , Tumor Cells, Cultured
12.
J Cereb Blood Flow Metab ; 39(4): 670-679, 2019 04.
Article En | MEDLINE | ID: mdl-29260608

Activation of ATP-sensitive potassium (KATP) channels in arterial smooth muscle (ASM) contributes to vasodilation evoked by a variety of endogenous and exogenous compounds. Although controversial, activation of KATP channels by neuropeptides such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase activating peptide (PACAP) in the trigeminovascular system, including the middle meningeal artery (MMA), has been linked to migraine headache. The objective of the current study was to determine if ongoing KATP channel activity also influences MMA diameter. In the absence of other exogenous compounds, the KATP channel inhibitors glibenclamide and PNU37883A induced constriction of isolated and pressurized MMAs. In contrast, KATP channel inhibition did not alter cerebral artery diameter. Consistent with tonic KATP activity in MMA, glibenclamide also induced ASM membrane potential depolarization and increased cytosolic Ca2+. Inhibitors of cAMP-dependent protein kinase (PKA) abolished basal KATP activation in MMA and caused a marked decrease in sensitivity to the synthetic KATP channel opener, cromakalim. In vivo MMA constriction in response to gibenclamide was observed using two-photon imaging of arterial diameter. Together these results indicate that PKA-mediated tonic KATP channel activity contributes to the regulation of MMA diameter.


KATP Channels/metabolism , Meningeal Arteries/diagnostic imaging , Animals , Cerebral Arteries , Glyburide/pharmacology , KATP Channels/antagonists & inhibitors , Meningeal Arteries/anatomy & histology , Meningeal Arteries/drug effects , Migraine Disorders/etiology , Muscle, Smooth, Vascular , Rats , Vasoconstriction/drug effects
13.
Microcirculation ; 25(1)2018 01.
Article En | MEDLINE | ID: mdl-29247493

Cerebral SVDs encompass a group of genetic and sporadic pathological processes leading to brain lesions, cognitive decline, and stroke. There is no specific treatment for SVDs, which progress silently for years before becoming clinically symptomatic. Here, we examine parallels in the functional defects of PAs in CADASIL, a monogenic form of SVD, and in response to SAH, a common type of hemorrhagic stroke that also targets the brain microvasculature. Both animal models exhibit dysregulation of the voltage-gated potassium channel, KV 1, in arteriolar myocytes, an impairment that compromises responses to vasoactive stimuli and impacts CBF autoregulation and local dilatory responses to neuronal activity (NVC). However, the extent to which this channelopathy-like defect ultimately contributes to these pathologies is unknown. Combining experimental data with computational modeling, we describe the role of KV 1 channels in the regulation of myocyte membrane potential at rest and during the modest increase in extracellular potassium associated with NVC. We conclude that PA resting membrane potential and myogenic tone depend strongly on KV 1.2/1.5 channel density, and that reciprocal changes in KV channel density in CADASIL and SAH produce opposite effects on extracellular potassium-mediated dilation during NVC.


Microvessels/pathology , Potassium Channels, Voltage-Gated/analysis , Animals , CADASIL/physiopathology , Dilatation , Humans , Potassium Channels, Voltage-Gated/physiology , Subarachnoid Hemorrhage/physiopathology
14.
Front Physiol ; 8: 210, 2017.
Article En | MEDLINE | ID: mdl-28439241

Voltage-dependent calcium channels (VDCCs) play an essential role in regulating cerebral artery diameter and it is widely appreciated that the L-type VDCC, CaV1.2, encoded by the CACNA1C gene, is a principal Ca2+ entry pathway in vascular myocytes. However, electrophysiological studies using 10 mM extracellular barium ([Ba2+]o) as a charge carrier have shown that ~20% of VDCC currents in cerebral artery myocytes are insensitive to 1,4-dihydropyridine (1,4-DHP) L-type VDDC inhibitors such as nifedipine. Here, we investigated the hypothesis that the concentration of extracellular divalent cations can influence nifedipine inhibition of VDCC currents. Whole-cell VDCC membrane currents were obtained from freshly isolated rat cerebral artery myocytes in extracellular solutions containing Ba2+ and/or Ca2+. In the absence of [Ca2+]o, both nifedipine-sensitive and -insensitive calcium currents were observed in 10 mM [Ba2+]o. However, VDCC currents were abolished by nifedipine when using a combination of 10 mM [Ba2+]o and 100 µM [Ca2+]o. VDCC currents were also completely inhibited by nifedipine in either 2 mM [Ba2+]o or 2 mM [Ca2+]o. The biophysical characteristics of all recorded VDCC currents were consistent with properties of a high-voltage activated VDCC, such as CaV1.2. Further, VDCC currents recorded in 10 mM [Ba2+]o ± 100 µM [Ca2+]o or 2 mM [Ba2+]o exhibited similar sensitivity to the benzothiazepine L-type VDCC blocker, diltiazem, with complete current inhibition at 100 µM. These data suggest that nifedipine inhibition is influenced by both Ca2+ binding to an external site(s) on these channels and surface charge effects related to extracellular divalent cations. In sum, this work demonstrates that the extracellular environment can profoundly impact VDCC current measurements.

15.
Nat Neurosci ; 20(5): 717-726, 2017 May.
Article En | MEDLINE | ID: mdl-28319610

Blood flow into the brain is dynamically regulated to satisfy the changing metabolic requirements of neurons, but how this is accomplished has remained unclear. Here we demonstrate a central role for capillary endothelial cells in sensing neural activity and communicating it to upstream arterioles in the form of an electrical vasodilatory signal. We further demonstrate that this signal is initiated by extracellular K+ -a byproduct of neural activity-which activates capillary endothelial cell inward-rectifier K+ (KIR2.1) channels to produce a rapidly propagating retrograde hyperpolarization that causes upstream arteriolar dilation, increasing blood flow into the capillary bed. Our results establish brain capillaries as an active sensory web that converts changes in external K+ into rapid, 'inside-out' electrical signaling to direct blood flow to active brain regions.


Brain/blood supply , Capillaries/physiology , Endothelial Cells/physiology , Potassium Channels, Inwardly Rectifying/physiology , Animals , Male , Membrane Potentials/physiology , Mice , Mice, Knockout , Mice, Transgenic , Potassium/physiology , Potassium Channels, Inwardly Rectifying/genetics , Vasodilation/physiology
16.
J Cereb Blood Flow Metab ; 37(11): 3625-3634, 2017 Nov.
Article En | MEDLINE | ID: mdl-28112024

Subarachnoid hemorrhage (SAH) induces acute changes in the cerebral microcirculation. Recent findings ex vivo suggest neurovascular coupling (NVC), the process that increases cerebral blood flow upon neuronal activity, is also impaired after SAH. The aim of the current study was to investigate whether this occurs also in vivo. C57BL/6 mice were subjected to either sham surgery or SAH by filament perforation. Twenty-four hours later NVC was tested by forepaw stimulation and CO2 reactivity by inhalation of 10% CO2. Vessel diameter was assessed in vivo by two-photon microscopy. NVC was also investigated ex vivo using brain slices. Cerebral arterioles of sham-operated mice dilated to 130% of baseline upon CO2 inhalation or forepaw stimulation and cerebral blood flow (CBF) increased. Following SAH, however, CO2 reactivity was completely lost and the majority of cerebral arterioles showed paradoxical constriction in vivo and ex vivo resulting in a reduced CBF response. As previous results showed intact NVC 3 h after SAH, the current findings indicate that impairment of NVC after cerebral hemorrhage occurs secondarily and is progressive. Since neuronal activity-induced vasoconstriction (inverse NVC) is likely to further aggravate SAH-induced cerebral ischemia and subsequent brain damage, inverse NVC may represent a novel therapeutic target after SAH.


Blood Vessels/pathology , Neurons/pathology , Neurovascular Coupling , Subarachnoid Hemorrhage/pathology , Animals , Arterioles/drug effects , Carbon Dioxide/pharmacology , Cerebral Arteries/drug effects , Cerebral Arteries/pathology , Cerebrovascular Circulation , Male , Mice , Mice, Inbred C57BL , Physical Stimulation , Subarachnoid Hemorrhage/mortality , Vasoconstriction/drug effects , Vasodilation/drug effects
17.
J Cereb Blood Flow Metab ; 37(1): 178-187, 2017 01.
Article En | MEDLINE | ID: mdl-26676226

Subarachnoid hemorrhage causes acute and long-lasting constrictions of pial arterioles. Whether these vessels dilate normally to neuronal activity is of great interest since a mismatch between delivery and consumption of glucose and oxygen may cause additional neuronal damage. Therefore, we investigated neurovascular reactivity of pial and parenchymal arterioles after experimental subarachnoid hemorrhage. C57BL/6 mice were subjected to subarachnoid hemorrhage by filament perforation or sham surgery. Neurovascular reactivity was assessed 3 h later by forepaw stimulation or inhalation of 10% CO2 Diameters of cerebral arterioles were assessed using two-photon microscopy. Neurovascular coupling and astrocytic endfoot Ca2+ were measured in brain slices using two-photon and infrared-differential interference contrast microscopy. Vessels of sham-operated mice dilated normally to CO2 and forepaw stimulation. Three hours after subarachnoid hemorrhage, CO2 reactivity was completely lost in both pial and parenchymal arterioles, while neurovascular coupling was not affected. Brain slices studies also showed normal neurovascular coupling and a normal increase in astrocytic endfoot Ca2+ acutely after subarachnoid hemorrhage. These findings suggest that communication between neurons, astrocytes, and parenchymal arterioles is not affected in the first few hours after subarachnoid hemorrhage, while CO2 reactivity, which is dependent on NO signaling, is completely lost.


Arterioles/physiopathology , Neurovascular Coupling/physiology , Subarachnoid Hemorrhage/physiopathology , Animals , Arterioles/pathology , Astrocytes/physiology , Calcium/metabolism , Carbon Dioxide/blood , Cell Communication , Mice , Mice, Inbred C57BL , Neurons/physiology , Time Factors , Vasoconstriction
18.
J Cereb Blood Flow Metab ; 36(11): 1901-1912, 2016 11.
Article En | MEDLINE | ID: mdl-27207166

Neurovascular coupling supports brain metabolism by matching focal increases in neuronal activity with local arteriolar dilation. Previously, we demonstrated that an emergence of spontaneous endfoot high-amplitude Ca2+ signals (eHACSs) caused a pathologic shift in neurovascular coupling from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage model animals. Extracellular purine nucleotides (e.g., ATP) can trigger astrocyte Ca2+ oscillations and may be elevated following subarachnoid hemorrhage. Here, the role of purinergic signaling in subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling was examined by imaging parenchymal arteriolar diameter and astrocyte Ca2+ signals in rat brain slices using two-photon fluorescent and infrared-differential interference contrast microscopy. We report that broad-spectrum inhibition of purinergic (P2) receptors using suramin blocked eHACSs and restored vasodilatory neurovascular coupling after subarachnoid hemorrhage. Importantly, eHACSs were also abolished using a cocktail of inhibitors targeting Gq-coupled P2Y receptors. Further, activation of P2Y receptors in brain slices from un-operated animals triggered high-amplitude Ca2+ events resembling eHACSs and disrupted neurovascular coupling. Neither tetrodotoxin nor bafilomycin A1 affected eHACSs suggesting that purine nucleotides are not released by ongoing neurotransmission and/or vesicular release after subarachnoid hemorrhage. These results indicate that purinergic signaling via P2Y receptors contributes to subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling.


Astrocytes/metabolism , Calcium Signaling/physiology , Neurovascular Coupling/physiology , Receptors, Purinergic P2Y/metabolism , Subarachnoid Hemorrhage/metabolism , Animals , Astrocytes/drug effects , Astrocytes/pathology , Calcium Signaling/drug effects , Disease Models, Animal , Male , Microcirculation/physiology , Microscopy, Fluorescence, Multiphoton , Purinergic P2Y Receptor Antagonists/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Subarachnoid Hemorrhage/pathology , Subarachnoid Hemorrhage/physiopathology , Suramin/pharmacology , Vasodilation/drug effects
19.
J Neurosci ; 35(39): 13375-84, 2015 Sep 30.
Article En | MEDLINE | ID: mdl-26424885

Physiologically, neurovascular coupling (NVC) matches focal increases in neuronal activity with local arteriolar dilation. Astrocytes participate in NVC by sensing increased neurotransmission and releasing vasoactive agents (e.g., K(+)) from perivascular endfeet surrounding parenchymal arterioles. Previously, we demonstrated an increase in the amplitude of spontaneous Ca(2+) events in astrocyte endfeet and inversion of NVC from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage (SAH) model rats. However, the role of spontaneous astrocyte Ca(2+) signaling in determining the polarity of the NVC response remains unclear. Here, we used two-photon imaging of Fluo-4-loaded rat brain slices to determine whether altered endfoot Ca(2+) signaling underlies SAH-induced inversion of NVC. We report a time-dependent emergence of endfoot high-amplitude Ca(2+) signals (eHACSs) after SAH that were not observed in endfeet from unoperated animals. Furthermore, the percentage of endfeet with eHACSs varied with time and paralleled the development of inversion of NVC. Endfeet with eHACSs were present only around arterioles exhibiting inversion of NVC. Importantly, depletion of intracellular Ca(2+) stores using cyclopiazonic acid abolished SAH-induced eHACSs and restored arteriolar dilation in SAH brain slices to two mediators of NVC (a rise in endfoot Ca(2+) and elevation of extracellular K(+)). These data indicate a causal link between SAH-induced eHACSs and inversion of NVC. Ultrastructural examination using transmission electron microscopy indicated that a similar proportion of endfeet exhibiting eHACSs also exhibited asymmetrical enlargement. Our results demonstrate that subarachnoid blood causes a delayed increase in the amplitude of spontaneous intracellular Ca(2+) release events leading to inversion of NVC. Significance statement: Aneurysmal subarachnoid hemorrhage (SAH)--strokes involving cerebral aneurysm rupture and release of blood onto the brain surface--are associated with high rates of morbidity and mortality. A common complication observed after SAH is the development of delayed cerebral ischemia at sites often remote from the site of rupture. Here, we provide evidence that SAH-induced changes in astrocyte Ca(2+) signaling lead to a switch in the polarity of the neurovascular coupling response from vasodilation to vasoconstriction. Thus, after SAH, signaling events that normally lead to vasodilation and enhanced delivery of blood to active brain regions cause vasoconstriction that would limit cerebral blood flow. These findings identify astrocytes as a key player in SAH-induced decreased cortical blood flow.


Astrocytes/pathology , Calcium Signaling , Neurovascular Coupling , Subarachnoid Hemorrhage/pathology , Animals , Arterioles/pathology , Astrocytes/ultrastructure , Cerebrovascular Circulation , Male , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/physiopathology , Vasoconstriction , Vasodilation
20.
Acta Neurochir Suppl ; 120: 89-94, 2015.
Article En | MEDLINE | ID: mdl-25366605

Voltage-gated potassium (K V) channels regulate cerebral artery tone and have been implicated in subarachnoid hemorrhage (SAH)-induced pathologies. Here, we examined whether matrix metalloprotease (MMP) activation contributes to SAH-induced K V current suppression and cerebral artery constriction via activation of epidermal growth factor receptors (EGFRs). Using patch clamp electrophysiology, we observed that K V currents were selectively decreased in cerebral artery myocytes isolated from SAH model rabbits. Consistent with involvement of enhanced MMP and EGFR activity in SAH-induced K V current suppression, we found that: (1) oxyhemoglobin (OxyHb) and/or the exogenous EGFR ligand, heparin-binding EGF-like growth factor (HB-EGF), failed to induce further K V current suppression after SAH and (2) gelatin zymography detected significantly higher MMP-2 activity after SAH. The removal of reactive oxygen species (ROS) by combined treatment with superoxide dismutase (SOD) and catalase partially inhibited OxyHb-induced K V current suppression. However, these agents had little effect on OxyHb-induced MMP-2 activation. Interestingly, in the presence of a broad-spectrum MMP inhibitor (GM6001), OxyHb failed to cause K V current suppression. These data suggest that OxyHb suppresses K V currents through both ROS-dependent and ROS-independent pathways involving MMP activation. The ROS-independent pathway involves activation of MMP-2, whereas the ROS-dependent pathway involves activation of a second unidentified MMP or ADAM (a disintegrin and metalloprotease domain).


Matrix Metalloproteinase 2/metabolism , Potassium Channels, Voltage-Gated/physiology , Reactive Oxygen Species/metabolism , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/physiopathology , Animals , Dipeptides/pharmacology , Disease Models, Animal , ErbB Receptors/metabolism , Heparin-binding EGF-like Growth Factor/metabolism , Heparin-binding EGF-like Growth Factor/pharmacology , Matrix Metalloproteinase Inhibitors/pharmacology , Oxyhemoglobins/metabolism , Patch-Clamp Techniques , Rabbits , Subarachnoid Hemorrhage/drug therapy
...