Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Commun ; 15(1): 1752, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409190

ABSTRACT

Stromal cells support epithelial cell and immune cell homeostasis and play an important role in inflammatory bowel disease (IBD) pathogenesis. Here, we quantify the stromal response to inflammation in pediatric IBD and reveal subset-specific inflammatory responses across colon segments and intestinal layers. Using data from a murine dynamic gut injury model and human ex vivo transcriptomic, protein and spatial analyses, we report that PDGFRA+CD142-/low fibroblasts and monocytes/macrophages co-localize in the intestine. In primary human fibroblast-monocyte co-cultures, intestinal PDGFRA+CD142-/low fibroblasts foster monocyte transition to CCR2+CD206+ macrophages through granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte-derived CCR2+CD206+ cells from co-cultures have a phenotype similar to intestinal CCR2+CD206+ macrophages from newly diagnosed pediatric IBD patients, with high levels of PD-L1 and low levels of GM-CSF receptor. The study describes subset-specific changes in stromal responses to inflammation and suggests that the intestinal stroma guides intestinal macrophage differentiation.


Subject(s)
Inflammatory Bowel Diseases , Monocytes , Humans , Animals , Mice , Child , Monocytes/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Inflammation/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Cell Differentiation
2.
Immunity ; 56(6): 1285-1302.e7, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37269830

ABSTRACT

The integrin CD49a marks highly cytotoxic epidermal-tissue-resident memory (TRM) cells, but their differentiation from circulating populations remains poorly defined. We demonstrate enrichment of RUNT family transcription-factor-binding motifs in human epidermal CD8+CD103+CD49a+ TRM cells, paralleled by high RUNX2 and RUNX3 protein expression. Sequencing of paired skin and blood samples revealed clonal overlap between epidermal CD8+CD103+CD49a+ TRM cells and circulating memory CD8+CD45RA-CD62L+ T cells. In vitro stimulation of circulating CD8+CD45RA-CD62L+ T cells with IL-15 and TGF-ß induced CD49a expression and cytotoxic transcriptional profiles in a RUNX2- and RUNX3-dependent manner. We therefore identified a reservoir of circulating cells with cytotoxic TRM potential. In melanoma patients, high RUNX2, but not RUNX3, transcription correlated with a cytotoxic CD8+CD103+CD49a+ TRM cell signature and improved patient survival. Together, our results indicate that combined RUNX2 and RUNX3 activity promotes the differentiation of cytotoxic CD8+CD103+CD49a+ TRM cells, providing immunosurveillance of infected and malignant cells.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Humans , CD8-Positive T-Lymphocytes/metabolism , Integrin alpha1/metabolism , Integrins/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Immunologic Memory , Leukocyte Common Antigens/metabolism , Melanoma/metabolism
3.
Cell Rep Med ; 4(5): 101038, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37160121

ABSTRACT

Innate lymphoid cells (ILCs) are considered innate counterparts of adaptive T cells; however, their common and unique transcriptional signatures in pediatric inflammatory bowel disease (pIBD) are largely unknown. Here, we report a dysregulated colonic ILC composition in pIBD colitis that correlates with inflammatory activity, including accumulation of naive-like CD45RA+CD62L- ILCs. Weighted gene co-expression network analysis (WGCNA) reveals modules of genes that are shared or unique across innate and adaptive lymphocytes. Shared modules include genes associated with activation/tissue residency, naivety/quiescence, and antigen presentation. Lastly, nearest-neighbor-based analysis facilitates the identification of "most inflamed" and "least inflamed" lymphocytes in pIBD colon with unique transcriptional signatures. Our study reveals shared and unique transcriptional signatures of colonic ILCs and T cells in pIBD. We also provide insight into the transcriptional regulation of colonic inflammation, deepening our understanding of the potential mechanisms involved in pIBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Child , Lymphocytes , Immunity, Innate/genetics , Colitis/genetics , T-Lymphocytes
4.
Scand J Immunol ; : e13195, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35652743

ABSTRACT

The Karolinska KI/K COVID-19 Immune Atlas project was conceptualized in March 2020 as a part of the academic research response to the developing SARS-CoV-2 pandemic. The aim was to rapidly provide a curated dataset covering the acute immune response towards SARS-CoV-2 infection in humans, as it occurred during the first wave. The Immune Atlas was built as an open resource for broad research and educational purposes. It contains a presentation of the response evoked by different immune and inflammatory cells in defined naïve patient-groups as they presented with moderate and severe COVID-19 disease. The present Resource Article describes how the Karolinska KI/K COVID-19 Immune Atlas allow scientists, students, and other interested parties to freely explore the nature of the immune response towards human SARS-CoV-2 infection in an online setting.

5.
Sci Immunol ; 7(70): eabj8301, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35427178

ABSTRACT

Innate lymphoid cells (ILCs) are highly plastic and predominantly mucosal tissue-resident cells that contribute to both homeostasis and inflammation depending on the microenvironment. The discovery of naïve-like ILCs suggests an ILC differentiation process that is akin to naïve T cell differentiation. Delineating the mechanisms that underlie ILC differentiation in tissues is crucial for understanding ILC biology in health and disease. Here, we showed that tonsillar ILCs expressing CD45RA lacked proliferative activity, indicative of cellular quiescence. CD62L distinguished two subsets of CD45RA+ ILCs. CD45RA+CD62L+ ILCs (CD62L+ ILCs) resembled circulating naïve ILCs because they lacked the transcriptional, metabolic, epigenetic, and cytokine production signatures of differentiated ILCs. CD45RA+CD62L- ILCs (CD62L- ILCs) were epigenetically similar to CD62L+ ILCs but showed a transcriptional, metabolic, and cytokine production signature that was more akin to differentiated ILCs. CD62L+ and CD62L- ILCs contained uni- and multipotent precursors of ILC1s/NK cells and ILC3s. Differentiation of CD62L+ and CD62L- ILCs led to metabolic reprogramming including up-regulation of genes associated with glycolysis, which was needed for their effector functions after differentiation. CD62L- ILCs with preferential differentiation capacity toward IL-22-producing ILC3s accumulated in the inflamed mucosa of patients with inflammatory bowel disease. These data suggested distinct differentiation potential of CD62L+ and CD62L- ILCs between tissue microenvironments and identified that manipulation of these cells is a possible approach to restore tissue-immune homeostasis.


Subject(s)
Immunity, Innate , Killer Cells, Natural , Cell Differentiation , Humans , Inflammation , Lymphocyte Activation
6.
Eur J Immunol ; 52(3): 503-510, 2022 03.
Article in English | MEDLINE | ID: mdl-34837225

ABSTRACT

Corona disease 2019 (COVID-19) affects multiple organ systems. Recent studies have indicated perturbations in the circulating metabolome linked to COVID-19 severity. However, several questions pertain with respect to the metabolome in COVID-19. We performed an in-depth assessment of 1129 unique metabolites in 27 hospitalized COVID-19 patients and integrated results with large-scale proteomic and immunology data to capture multiorgan system perturbations. More than half of the detected metabolic alterations in COVID-19 were driven by patient-specific confounding factors ranging from comorbidities to xenobiotic substances. Systematically adjusting for this, a COVID-19-specific metabolic imprint was defined which, over time, underwent a switch in response to severe acute respiratory syndrome coronavirus-2 seroconversion. Integration of the COVID-19 metabolome with clinical, cellular, molecular, and immunological severity scales further revealed a network of metabolic trajectories aligned with multiple pathways for immune activation, and organ damage including neurological inflammation and damage. Altogether, this resource refines our understanding of the multiorgan system perturbations in severe COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Metabolome/immunology , SARS-CoV-2 , Adolescent , Adult , Aged , COVID-19/complications , Case-Control Studies , Central Nervous System Diseases/etiology , Central Nervous System Diseases/immunology , Central Nervous System Diseases/metabolism , Cohort Studies , Female , Humans , Male , Metabolomics , Middle Aged , Organ Specificity , Pandemics , Phenotype , Proteomics , Severity of Illness Index , Young Adult
7.
Sci Immunol ; 6(64): eabk0894, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34519539

ABSTRACT

Cross-reactive CD4+ T cells that recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more commonly detected in the peripheral blood of unexposed individuals compared with SARS-CoV-2­reactive CD8+ T cells. However, large numbers of memory CD8+ T cells reside in tissues, feasibly harboring localized SARS-CoV-2­specific immune responses. To test this idea, we performed a comprehensive functional and phenotypic analysis of virus-specific T cells in tonsils, a major lymphoid tissue site in the upper respiratory tract, and matched peripheral blood samples obtained from children and adults before the emergence of COVID-19 (coronavirus disease 2019). We found that SARS-CoV-2­specific memory CD4+ T cells could be found at similar frequencies in the tonsils and peripheral blood in unexposed individuals, whereas functional SARS-CoV-2­specific memory CD8+ T cells were almost only detectable in the tonsils. Tonsillar SARS-CoV-2­specific memory CD8+ T cells displayed a follicular homing and tissue-resident memory phenotype, similar to tonsillar Epstein-Barr virus­specific memory CD8+ T cells, but were functionally less potent than other virus-specific memory CD8+ T cell responses. The presence of preexisting tissue-resident memory CD8+ T cells in unexposed individuals could potentially enable rapid sentinel immune responses against SARS-CoV-2.


Subject(s)
Adenoids/immunology , CD8-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Adenoids/cytology , Adult , Aged , Child, Preschool , Female , Flow Cytometry , Humans , Male , Middle Aged
8.
Clin Transl Immunology ; 9(12): e1224, 2020.
Article in English | MEDLINE | ID: mdl-33343897

ABSTRACT

OBJECTIVES: The role of innate lymphoid cells (ILCs) in coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unknown. Understanding the immune response in COVID-19 could contribute to unravel the pathogenesis and identification of treatment targets. Here, we describe the phenotypic landscape of circulating ILCs in COVID-19 patients and identified ILC phenotypes correlated to serum biomarkers, clinical markers and laboratory parameters relevant in COVID-19. METHODS: Blood samples collected from moderately (n = 11) and severely ill (n = 12) COVID-19 patients, as well as healthy control donors (n = 16), were analysed with 18-parameter flow cytometry. Using supervised and unsupervised approaches, we examined the ILC activation status and homing profile. Clinical and laboratory parameters were obtained from all COVID-19 patients, and serum biomarkers were analysed with multiplex immunoassays. RESULTS: Innate lymphoid cells were largely depleted from the circulation of COVID-19 patients compared with healthy controls. Remaining circulating ILCs revealed decreased frequencies of ILC2 in severe COVID-19, with a concomitant decrease of ILC precursors (ILCp) in all patients, compared with controls. ILC2 and ILCp showed an activated phenotype with increased CD69 expression, whereas expression levels of the chemokine receptors CXCR3 and CCR4 were significantly altered in ILC2 and ILCp, and ILC1, respectively. The activated ILC profile of COVID-19 patients was associated with soluble inflammatory markers, while frequencies of ILC subsets were correlated with laboratory parameters that reflect the disease severity. CONCLUSION: This study provides insights into the potential role of ILCs in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.

9.
Trends Immunol ; 41(10): 902-917, 2020 10.
Article in English | MEDLINE | ID: mdl-32917510

ABSTRACT

Although the function of the circulating immune cell compartment has been studied in detail for decades, limitations in terms of access and cell yields from peripheral tissues have restricted our understanding of tissue-based immunity, particularly in humans. Recent advances in high-throughput protein analyses, transcriptional profiling, and epigenetics have partially overcome these obstacles. Innate lymphoid cells (ILCs) are predominantly tissue-resident, and accumulating data indicate that they have significant tissue-specific functions. We summarize current knowledge of ILC phenotypes in various tissues in mice and humans, aiming to clarify ILC immunity in distinct anatomical locations.


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Humans , Immunity, Innate/immunology , Lymphocytes/cytology , Lymphocytes/immunology
10.
Immunity ; 52(4): 573-575, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294401

ABSTRACT

Little is known about host-microbiota interactions regulating anti-microbial immunity in the stomach. In this issue, Satoh-Takayama et al. describe an additional immune mechanism involving innate lymphoid cells type 2 (ILC2), which controls infection with Helicobacter pylori, a bacterium associated with inflammation and cancer.


Subject(s)
Helicobacter pylori , Lymphocytes , Helicobacter pylori/immunology , Immunity, Innate , Immunoglobulin A , Stomach
11.
Nat Commun ; 11(1): 2049, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341343

ABSTRACT

ILCs and T helper cells have been shown to exert bi-directional regulation in mice. However, how crosstalk between ILCs and CD4+ T cells influences immune function in humans is unknown. Here we show that human intestinal ILCs co-localize with T cells in healthy and colorectal cancer tissue and display elevated HLA-DR expression in tumor and tumor-adjacent areas. Although mostly lacking co-stimulatory molecules ex vivo, intestinal and peripheral blood (PB) ILCs acquire antigen-presenting characteristics triggered by inflammasome-associated cytokines IL-1ß and IL-18. IL-1ß drives the expression of HLA-DR and co-stimulatory molecules on PB ILCs in an NF-κB-dependent manner, priming them as efficient inducers of cytomegalovirus-specific memory CD4+ T-cell responses. This effect is strongly inhibited by the anti-inflammatory cytokine TGF-ß. Our results suggest that circulating and tissue-resident ILCs have the intrinsic capacity to respond to the immediate cytokine milieu and regulate local CD4+ T-cell responses, with potential implications for anti-tumor immunity and inflammation.


Subject(s)
Antigen-Presenting Cells/immunology , Cytokines/immunology , Immunity, Innate , Lymphocytes/immunology , Animals , Antigen Presentation , CD4-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Humans , Inflammasomes/immunology , Interleukin-18/immunology , Interleukin-1beta/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Leukocytes, Mononuclear/immunology , Mice
12.
J Immunol ; 204(1): 68-77, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31801814

ABSTRACT

Extremely preterm neonates are particularly susceptible to infections, likely because of severely impaired immune function. However, little is known on the composition of the T cell compartment in early life in this vulnerable population. We conducted a comprehensive phenotypic flow cytometry-based longitudinal analysis of the peripheral conventional T cell compartment of human extremely low gestational age neonates (ELGAN) with extremely low birth weight (ELBW; <1000 g) participating in a randomized placebo-controlled study of probiotic supplementation. PBMCs from ELGAN/ELBW neonates were collected at day 14, day 28, and postmenstrual week 36. Comparisons were made with full-term 14-d-old neonates. Total CD4+ and CD8+ T cell frequencies were markedly lower in the preterm neonates. The reduction was more pronounced among the CD8+ population, resulting in an increased CD4/CD8 ratio. The preterm infants were also more Th2 skewed than the full-term infants. Although the frequency of regulatory T cells seemed normal in the ELGAN/ELBW preterm neonates, their expression of the homing receptors α4ß7, CCR4, and CCR9 was altered. Notably, ELGAN/ELBW infants developing necrotizing enterocolitis before day 14 had higher expression of CCR9 in CD4+T cells at day 14. Chorioamnionitis clearly associated with reduced T regulatory cell frequencies and functional characteristics within the preterm group. Finally, probiotic supplementation with Lactobacillus reuteri did not impose any phenotypic changes of the conventional T cell compartment. In conclusion, notable immaturities of the T cell compartment in ELGAN/ELBW neonates may at least partially explain their increased susceptibility to severe immune-mediated morbidities.


Subject(s)
T-Lymphocytes/immunology , Double-Blind Method , Humans , Infant, Extremely Premature , Prospective Studies
13.
Eur J Immunol ; 49(9): 1344-1355, 2019 09.
Article in English | MEDLINE | ID: mdl-31151137

ABSTRACT

The Ikaros family of transcription factors (TFs) are important regulators of lymphocyte function. However, their roles in human innate lymphoid cell (ILC) function remain unclear. Here, we found that Ikaros (IKZF1) is expressed by all ILC subsets, including NK cells, in blood, tonsil, and gut, while Helios (IKZF2) is preferentially expressed by ILC3 in tonsil and gut. Aiolos (IKZF3) followed the expression pattern of T-bet and Eomes, being predominantly expressed by ILC1 and NK cells. Differentiation of IFN-γ-producing ILC1 and NK cells from ILC3 by IL-1ß plus IL-12-stimulation was associated with upregulation of T-bet and Aiolos. Selective degradation of Aiolos and Ikaros by lenalidomide suppressed ILC1 and NK cell differentiation and expression of ILC1 and NK cell-related transcripts (LEF1, PRF1, GRZB, CD244, NCR3, and IRF8). In line with reduced ILC1/NK cell differentiation, we observed an increase in the expression of the ILC3-related TF Helios, as well as ILC3 transcripts (TNFSF13B, IL22, NRP1, and RORC) and in the frequency of IL-22 producing ILC3 in cultures with IL-1ß and IL-23. These data suggest that suppression of Aiolos and Ikaros expression inhibits ILC1 and NK cell differentiation while ILC3 function is maintained. Hence, our results open up for new possibilities in targeting Ikaros family TFs for modulation of type 1/3 immunity in inflammation and cancer.


Subject(s)
Cell Differentiation/immunology , Cell Transdifferentiation/immunology , Ikaros Transcription Factor/immunology , Killer Cells, Natural/immunology , Lenalidomide/immunology , Cells, Cultured , Humans , Immunity, Innate/immunology , Interferon Regulatory Factors/immunology , Interleukin-12/immunology , Interleukin-1beta/immunology , Lymphocytes/immunology
14.
J Allergy Clin Immunol ; 143(6): 2202-2214.e5, 2019 06.
Article in English | MEDLINE | ID: mdl-30578872

ABSTRACT

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and maintenance of type 2 immune responses. The prostaglandin (PG) D2-chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) receptor axis potently induces cytokine production and ILC2 migration. OBJECTIVE: We set out to examine PG production in human ILC2s and the implications of such endogenous production on ILC2 function. METHODS: The effects of the COX-1/2 inhibitor flurbiprofen, the hematopoietic prostaglandin D2 synthase (HPGDS) inhibitor KMN698, and the CRTH2 antagonist CAY10471 on human ILC2s were determined by assessing receptor and transcription factor expression, cytokine production, and gene expression with flow cytometry, ELISA, and quantitative RT-PCR, respectively. Concentrations of lipid mediators were measured by using liquid chromatography-tandem mass spectrometry and ELISA. RESULTS: We show that ILC2s constitutively express HPGDS and upregulate COX-2 upon IL-2, IL-25, and IL-33 plus thymic stromal lymphopoietin stimulation. Consequently, PGD2 and its metabolites can be detected in ILC2 supernatants. We reveal that endogenously produced PGD2 is essential in cytokine-induced ILC2 activation because blocking of the COX-1/2 or HPGDS enzymes or the CRTH2 receptor abolishes ILC2 responses. CONCLUSION: PGD2 produced by ILC2s is, in a paracrine/autocrine manner, essential in cytokine-induced ILC2 activation. Hence we provide the detailed mechanism behind how CRTH2 antagonists represent promising therapeutic tools for allergic diseases by controlling ILC2 function.


Subject(s)
Hypersensitivity/drug therapy , Lymphocytes/immunology , Prostaglandin D2/metabolism , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Carbazoles/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Cell Communication , Cells, Cultured , Cytokines/metabolism , Flurbiprofen/pharmacology , Humans , Intramolecular Oxidoreductases/antagonists & inhibitors , Lipocalins/antagonists & inhibitors , Lymphocyte Activation , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Sulfonamides/pharmacology , Th2 Cells/immunology
15.
J Allergy Clin Immunol ; 141(1): 279-292, 2018 01.
Article in English | MEDLINE | ID: mdl-28433688

ABSTRACT

BACKGROUND: Vitamin D deficiency is a risk factor for inflammatory bowel disease (IBD). The IL-23-driven tissue-resident group 3 innate lymphoid cells (ILC3s) play essential roles in intestinal immunity, and targeting IL-23/12 is a promising approach in IBD therapy. OBJECTIVE: We set out to define the role of 1α,25-dihydroxy vitamin D3 (1,25D) in regulating functional responses of human mucosal ILC3s to IL-23 plus IL-1ß stimulation. METHODS: Transcriptomes of sorted tonsillar ILC3s were assessed by using microarray analysis. ILC3 cytokine production, proliferation, and differentiation were determined by means of flow cytometry, ELISA, and multiplex immunoassay. Intestinal cell suspensions and ILC3s sorted from gut biopsy specimens of patients with IBD were also analyzed along with plasma 25-hydroxy vitamin D3 (25D) detection. RESULTS: ILC3s stimulated with IL-23 plus IL-1ß upregulated the vitamin D receptor and responded to 1,25D with downregulation of the IL-23 receptor pathway. Consequently, 1,25D suppressed IL-22, IL-17F, and GM-CSF production from tonsillar and gut ILC3s. In parallel, 1,25D upregulated genes linked to the IL-1ß signaling pathway, as well as the IL-1ß-inducible cytokines IL-6, IL-8, and macrophage inflammatory protein 1α/ß. The 1,25D-triggered skewing in ILC3 function was not accompanied or caused by changes in viability, proliferation, or phenotype. Finally, we confirmed low 25D plasma levels in patients with IBD with active inflammation. CONCLUSION: In light of the beneficial targeting of IL-23/12 in patients with IBD, 1,25D appears as an interesting therapeutic agent that inhibits the IL-23 receptor pathway, providing a novel mechanism for how ILC3s could be manipulated to regulate intestinal inflammation.


Subject(s)
Lymphocytes/immunology , Lymphocytes/metabolism , Mucous Membrane/cytology , Mucous Membrane/immunology , Receptors, Interleukin/metabolism , Signal Transduction/immunology , Vitamin D/pharmacology , Biomarkers , Cell Proliferation , Cell Survival/genetics , Cell Survival/immunology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Immunophenotyping , Lymphocyte Activation/immunology , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism
16.
Front Immunol ; 8: 1699, 2017.
Article in English | MEDLINE | ID: mdl-29250074

ABSTRACT

The intestinal microbiota influences immune maturation during childhood, and is implicated in early-life allergy development. However, to directly study intestinal microbes and gut immune responses in infants is difficult. To investigate how different types of early-life gut microbiota affect immune development, we collected fecal samples from children with different allergic heredity (AH) and inoculated germ-free mice. Immune responses and microbiota composition were evaluated in the offspring of these mice. Microbial composition in the small intestine, the cecum and the colon were determined by 16S rRNA sequencing. The intestinal microbiota differed markedly between the groups of mice, but only exposure to microbiota associated with AH and known future allergy in children resulted in a T helper 17 (Th17)-signature, both systemically and in the gut mucosa in the mouse offspring. These Th17 responses could be signs of a particular microbiota and a shift in immune development, ultimately resulting in an increased risk of allergy.

SELECTION OF CITATIONS
SEARCH DETAIL
...