Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Science ; 380(6650): eadg0934, 2023 06 16.
Article En | MEDLINE | ID: mdl-37319212

Aging is characterized by a decline in tissue function, but the underlying changes at cellular resolution across the organism remain unclear. Here, we present the Aging Fly Cell Atlas, a single-nucleus transcriptomic map of the whole aging Drosophila. We characterized 163 distinct cell types and performed an in-depth analysis of changes in tissue cell composition, gene expression, and cell identities. We further developed aging clock models to predict fly age and show that ribosomal gene expression is a conserved predictive factor for age. Combining all aging features, we find distinctive cell type-specific aging patterns. This atlas provides a valuable resource for studying fundamental principles of aging in complex organisms.


Aging , Cellular Senescence , Drosophila melanogaster , Animals , Aging/genetics , Gene Expression Profiling , Transcriptome , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Atlases as Topic
2.
Proc Natl Acad Sci U S A ; 119(25): e2203179119, 2022 06 21.
Article En | MEDLINE | ID: mdl-35696569

Recent advances in single-cell sequencing provide a unique opportunity to gain novel insights into the diversity, lineage, and functions of cell types constituting a tissue/organ. Here, we performed a single-nucleus study of the adult Drosophila renal system, consisting of Malpighian tubules and nephrocytes, which shares similarities with the mammalian kidney. We identified 11 distinct clusters representing renal stem cells, stellate cells, regionally specific principal cells, garland nephrocyte cells, and pericardial nephrocytes. Characterization of the transcription factors specific to each cluster identified fruitless (fru) as playing a role in stem cell regeneration and Hepatocyte nuclear factor 4 (Hnf4) in regulating glycogen and triglyceride metabolism. In addition, we identified a number of genes, including Rho guanine nucleotide exchange factor at 64C (RhoGEF64c), Frequenin 2 (Frq2), Prip, and CG1093 that are involved in regulating the unusual star shape of stellate cells. Importantly, the single-nucleus dataset allows visualization of the expression at the organ level of genes involved in ion transport and junctional permeability, providing a systems-level view of the organization and physiological roles of the tubules. Finally, a cross-species analysis allowed us to match the fly kidney cell types to mouse kidney cell types and planarian protonephridia, knowledge that will help the generation of kidney disease models. Altogether, our study provides a comprehensive resource for studying the fly kidney.


Drosophila Proteins , Drosophila melanogaster , Hepatocyte Nuclear Factor 4 , Malpighian Tubules , Nerve Tissue Proteins , Transcription Factors , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Hepatocyte Nuclear Factor 4/genetics , Kidney/cytology , Kidney/physiology , Malpighian Tubules/cytology , Malpighian Tubules/physiology , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Regeneration , Sequence Analysis, RNA/methods , Single-Cell Analysis , Stem Cells/metabolism , Stem Cells/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Science ; 375(6584): eabk2432, 2022 03 04.
Article En | MEDLINE | ID: mdl-35239393

For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae, that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.


Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Transcriptome , Animals , Cell Nucleus/metabolism , Databases, Genetic , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Female , Gene Expression Regulation , Gene Regulatory Networks , Genes, Insect , Male , RNA-Seq , Sex Characteristics , Single-Cell Analysis , Transcription Factors/genetics
4.
Elife ; 112022 03 21.
Article En | MEDLINE | ID: mdl-35311644

Alzheimer's disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify a potential earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of the disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the Bone Morphogenetic Signaling (BMP) pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.


Alzheimer Disease , Neurodegenerative Diseases , Aging/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cellular Senescence , Disease Models, Animal , Inflammation , Mice , Mice, Transgenic , Plaque, Amyloid , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
5.
Elife ; 102021 12 15.
Article En | MEDLINE | ID: mdl-34910626

Most cell fate trajectories during development follow a diverging, tree-like branching pattern, but the opposite can occur when distinct progenitors contribute to the same cell type. During this convergent differentiation, it is unknown if cells 'remember' their origins transcriptionally or whether this influences cell behavior. Most coronary blood vessels of the heart develop from two different progenitor sources-the endocardium (Endo) and sinus venosus (SV)-but whether transcriptional or functional differences related to origin are retained is unknown. We addressed this by combining lineage tracing with single-cell RNA sequencing (scRNAseq) in embryonic and adult mouse hearts. Shortly after coronary development begins, capillary endothelial cells (ECs) transcriptionally segregated into two states that retained progenitor-specific gene expression. Later in development, when the coronary vasculature is well established but still remodeling, capillary ECs again segregated into two populations, but transcriptional differences were primarily related to tissue localization rather than lineage. Specifically, ECs in the heart septum expressed genes indicative of increased local hypoxia and decreased blood flow. Adult capillary ECs were more homogeneous with respect to both lineage and location. In agreement, SV- and Endo-derived ECs in adult hearts displayed similar responses to injury. Finally, scRNAseq of developing human coronary vessels indicated that the human heart followed similar principles. Thus, over the course of development, transcriptional heterogeneity in coronary ECs is first influenced by lineage, then by location, until heterogeneity declines in the homeostatic adult heart. These results highlight the plasticity of ECs during development, and the validity of the mouse as a model for human coronary development.


Coronary Vessels/embryology , Embryo, Mammalian/metabolism , Embryonic Development , Endothelial Cells/metabolism , Animals , Humans , Mice , RNA-Seq , Single-Cell Analysis
6.
Elife ; 102021 02 08.
Article En | MEDLINE | ID: mdl-33555999

Recognition of environmental cues is essential for the survival of all organisms. Transcriptional changes occur to enable the generation and function of the neural circuits underlying sensory perception. To gain insight into these changes, we generated single-cell transcriptomes of Drosophila olfactory- (ORNs), thermo-, and hygro-sensory neurons at an early developmental and adult stage using single-cell and single-nucleus RNA sequencing. We discovered that ORNs maintain expression of the same olfactory receptors across development. Using receptor expression and computational approaches, we matched transcriptomic clusters corresponding to anatomically and physiologically defined neuron types across multiple developmental stages. We found that cell-type-specific transcriptomes partly reflected axon trajectory choices in development and sensory modality in adults. We uncovered stage-specific genes that could regulate the wiring and sensory responses of distinct ORN types. Collectively, our data reveal transcriptomic features of sensory neuron biology and provide a resource for future studies of their development and physiology.


Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Olfactory Receptor Neurons/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Female , Male , Sequence Analysis, RNA , Single-Cell Analysis , Smell , Transcriptome
7.
Elife ; 102021 01 11.
Article En | MEDLINE | ID: mdl-33427646

Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage-neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.


Drosophila melanogaster/metabolism , Neurites/metabolism , Olfactory Nerve/metabolism , Transcriptome , Animals , Single-Cell Analysis , Time Factors
8.
Science ; 370(6523)2020 12 18.
Article En | MEDLINE | ID: mdl-33335034

How have complex brains evolved from simple circuits? Here we investigated brain region evolution at cell-type resolution in the cerebellar nuclei, the output structures of the cerebellum. Using single-nucleus RNA sequencing in mice, chickens, and humans, as well as STARmap spatial transcriptomic analysis and whole-central nervous system projection tracing, we identified a conserved cell-type set containing two region-specific excitatory neuron classes and three region-invariant inhibitory neuron classes. This set constitutes an archetypal cerebellar nucleus that was repeatedly duplicated to form new regions. The excitatory cell class that preferentially funnels information to lateral frontal cortices in mice becomes predominant in the massively expanded human lateral nucleus. Our data suggest a model of brain region evolution by duplication and divergence of entire cell-type sets.


Biological Evolution , Cerebellar Nuclei/cytology , Neurons/classification , Animals , Cerebellar Nuclei/metabolism , Chickens , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , RNA-Seq
9.
Curr Biol ; 30(7): 1189-1198.e5, 2020 04 06.
Article En | MEDLINE | ID: mdl-32059767

The regulatory mechanisms by which neurons coordinate their physiology and connectivity are not well understood. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. Each ORN type expresses a unique olfactory receptor, or a combination thereof, and sends their axons to a stereotyped glomerulus. Using single-cell RNA sequencing, we identified 33 transcriptomic clusters for ORNs and mapped 20 to their glomerular types, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN types. Each ORN type expresses hundreds of transcription factors. Transcriptome-instructed genetic analyses revealed that (1) one broadly expressed transcription factor (Acj6) only regulates olfactory receptor expression in one ORN type and only wiring specificity in another type, (2) one type-restricted transcription factor (Forkhead) only regulates receptor expression, and (3) another type-restricted transcription factor (Unplugged) regulates both events. Thus, ORNs utilize diverse strategies and complex regulatory networks to coordinate their physiology and connectivity.


Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Forkhead Transcription Factors/genetics , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Olfactory Receptor Neurons/physiology , POU Domain Factors/genetics , Receptors, Odorant/genetics , Transcriptome , Animals , Axons/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Forkhead Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/metabolism , POU Domain Factors/metabolism , Receptors, Odorant/metabolism , Single-Cell Analysis , Smell/physiology
10.
Elife ; 82019 10 24.
Article En | MEDLINE | ID: mdl-31647409

Serotonin neurons of the dorsal and median raphe nuclei (DR, MR) collectively innervate the entire forebrain and midbrain, modulating diverse physiology and behavior. To gain a fundamental understanding of their molecular heterogeneity, we used plate-based single-cell RNA-sequencing to generate a comprehensive dataset comprising eleven transcriptomically distinct serotonin neuron clusters. Systematic in situ hybridization mapped specific clusters to the principal DR, caudal DR, or MR. These transcriptomic clusters differentially express a rich repertoire of neuropeptides, receptors, ion channels, and transcription factors. We generated novel intersectional viral-genetic tools to access specific subpopulations. Whole-brain axonal projection mapping revealed that DR serotonin neurons co-expressing vesicular glutamate transporter-3 preferentially innervate the cortex, whereas those co-expressing thyrotropin-releasing hormone innervate subcortical regions in particular the hypothalamus. Reconstruction of 50 individual DR serotonin neurons revealed diverse and segregated axonal projection patterns at the single-cell level. Together, these results provide a molecular foundation of the heterogenous serotonin neuronal phenotypes.


Neural Pathways/anatomy & histology , Neural Pathways/physiology , Raphe Nuclei/cytology , Raphe Nuclei/physiology , Serotonergic Neurons/cytology , Serotonergic Neurons/physiology , Transcriptome , Animals , Brain Mapping , Mice , Sequence Analysis, RNA , Single-Cell Analysis
11.
Behav Brain Res ; 339: 124-129, 2018 Feb 26.
Article En | MEDLINE | ID: mdl-29180134

Females are an under-represented research model and the mechanisms through which sleep loss impairs cognition are not clear. Since levels of reproductive hormones and the estrous cycle are sensitive to sleep loss and necessary for learning and memory, we hypothesized that sleep deprivation impacts learning and memory in female mice by interfering with the estrous cycle. We used the object recognition task to assess learning and memory in female mice during separate phases of the estrous cycle and after sleep loss. Mice in metestrus/diestrus attended to sample objects less than mice in proestrus/estrus during object acquisition, the first phase of the object recognition task. Subsequently, during the recognition phase of the task, only mice in proestrus/estrus displayed a preference for the novel object. Sleep deprivation for 12h immediately before the object recognition task reduced time attending to sample objects and novel object preference for mice in proestrus/estrus, without changing length of the estrous cycle. These results show that sleep deprived mice in proestrus/estrus had learning deficits and memory impairments, like mice in metestrus/diestrus. Since sleep deprivation did not disrupt the estrous cycle, however, results did not support the hypothesis. Cognitive impairments due to acute sleep loss were not due to alterations to the estrous cycle.


Estrous Cycle/physiology , Learning/physiology , Memory/physiology , Metestrus/physiology , Sleep Deprivation/physiopathology , Animals , Behavior, Animal/physiology , Female , Mice, Inbred C57BL , Proestrus/physiology
...