Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 71
2.
Front Oncol ; 13: 1195520, 2023.
Article En | MEDLINE | ID: mdl-37234985

Chronic inflammation of the alveolar bones and connective tissues supporting teeth causes periodontal disease, one of the most prevalent infectious diseases in humans. It was previously reported that oral cancer was the sixth most common cancer in the world, followed by squamous cell carcinoma. Periodontal disease has been linked to an increased risk for oral cancer in some studies, and these studies have found a positive relationship between oral cancer and periodontal disease. In this work, we aimed to explore the potential correlation between oral squamous cell carcinoma (OSCC) and Periodontal disease. The single-cell RNA sequence analysis was applied to explore the genes that were closely associated with cancer-associated fibroblasts (CAFs). the head and neck squamous cell carcinoma. The Single sample Gene Set Enrichment Analysis (ssGSEA) algorithm was applied to explore the scores of CAFs. Subsequently, the differentially expressed analysis was applied to explore the CAFs-related genes that play a key role in the OSCC cohort. The LASSO regression analysis and the COX regression analysis were applied to construct the CAFs-based periodontal disease-related risk model. In addition, the correlation analysis was used to explore the correlation between the risk model and clinical features, immune-related cells, and immune-related genes. By using the single-cell RNA sequence analysis, we successfully obtained the biomarkers for the CAFs. Finally, we successfully obtained a six-CAFs-related genes risk model. The ROC curve and survival analysis revealed that the risk model showed good predictive value in OSCC patients. Our analysis successfully provided a new direction for the treatment and prognosis of OSCC patients.

3.
Front Immunol ; 14: 1168188, 2023.
Article En | MEDLINE | ID: mdl-37228614

Background: Mendelian randomization (MR) was used to evaluate the bidirectional causal relationship between inflammatory bowel disease (IBD) and interleukins (ILs), chemokines. Methods: Genetic instruments and summary data of five ILs and six chemokines were obtained from a genome-wide association study database, and instrumental variables related to IBD were obtained from the FinnGen Consortium. Inverse variance weighting (IVW) was used as the main MR analysis method, and several other MR methods including MR-Egger and weighted median were used to confirm the reliability of the results. Sensitivity analyses such as heterogeneity and pleiotropy were also performed. Results: The IVW method provided evidence to support that genetically predicted IL-16, IL-18, and CXCL10 significantly positively correlated with IBD, while IL-12p70 and CCL23 significantly negatively correlated with IBD. IL-16 and IL-18 had a suggestive association with an increased risk of ulcerative colitis (UC), and CXCL10 had a suggestive association with an increased risk of Crohn's disease (CD). However, there was no evidence to support that IBD and two main subtypes (UC and CD) are associated with changes in the levels of ILs and chemokines. The results of the sensitivity analyses were robust and no evidence of heterogeneity and horizontal pleiotropy was observed. Conclusions: The present study showed that some ILs and chemokines affect IBD, but IBD and its main subtypes (UC and CD) have no effect on the level changes of ILs and chemokines.


Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Interleukin-18 , Interleukin-16 , Genome-Wide Association Study , Mendelian Randomization Analysis , Reproducibility of Results , Inflammatory Bowel Diseases/genetics , Interleukins/genetics , Chemokines/genetics
4.
Vaccines (Basel) ; 12(1)2023 Dec 21.
Article En | MEDLINE | ID: mdl-38276670

Swine enteric coronaviruses (SECs) cause significant economic losses to the pig industry in China. Although many commercialized vaccines against transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are available, viruses are still widespread. The recent emergence of porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV), for which no vaccines are available, increases the disease burden. In this review, we first introduced the genomic organization and epidemiology of SECs in China. Then, we discussed the current vaccine development and application in China, aiming to provide suggestions for better prevention and control of SECs in China and other countries.

5.
Nutrients ; 14(20)2022 Oct 14.
Article En | MEDLINE | ID: mdl-36296987

Shortening is mainly derived from the partial hydrogenation of palm oil and widely used in fast food. Food processed with shortening contains high levels of industrial trans fatty acids. Studies have shown that there is a correlation between industrial trans fatty acids, obesity, and depression. However, the regulatory effect of neuronal nitric oxide synthase (nNOS) on depression in obese patients is still unknown. The purpose of this study was to explore mood changes in obese mice fed a high shortening diet, and to determine the regulatory effect of nNOS on depressive-like behaviors in obese mice. We used a high shortening diet-induced obesity mouse model to systematically assess the metabolic response, behavioral changes, prefrontal and hippocampal nNOS protein levels, and the effect of nNOS inhibitors (7-nitroindole) on depression-like behavior in obese mice. Interestingly, obese mice on a 9-week high-shortening diet developed short-term spatial working memory impairment and anxiety-like behavior, and obesity may be a risk factor for cognitive impairment and mood disorders. In animals fed a high shortening diet for 12 weeks, obese mice developed depression-like behavior and had significantly elevated levels of nNOS protein expression in the hippocampus and prefrontal lobe. Administration of the nNOS inhibitor 7-nitroindole could improve depression-like behaviors in obese mice, further suggesting that inhibition of nNOS is helpful for depression associated with obesity.


Depression , Trans Fatty Acids , Animals , Mice , Nitric Oxide Synthase Type I/metabolism , Mice, Obese , Depression/etiology , Depression/metabolism , Palm Oil/metabolism , Hippocampus/metabolism , Obesity/complications , Obesity/metabolism , Nitric Oxide/metabolism
6.
Front Psychiatry ; 13: 896794, 2022.
Article En | MEDLINE | ID: mdl-35664469

Winner-loser effects influence subsequent agonistic interactions between conspecifics. Previous winning experiences could strengthen future aggression and increase the chance of winning the next agonistic interaction, while previous losing experiences could have the opposite effect. Although the role of A-to-I RNA editing has been recently implicated in chronic social defeat stress and aggressive behavior, it remains to be further elucidated in chronic social conflicts in agonistic interactions, especially in the repeated aggression (winners) and repeated defeat (losers) resulted from these conflicts. In the current study, transcriptome-wide A-to-I RNA editing in the dorsal striatum was investigated in a mouse model of chronic social conflicts, and compared between mice repeatedly winning and losing daily agonistic interactions. Our analysis identified 622 A-to-I RNA editing sites in the mouse dorsal striatum, with 23 to be differentially edited in 22 genes, most of which had been previously associated with neurological, psychiatric, or immune disorders. Among these differential RNA editing (DRE) sites four missense variants were observed in neuroligin 2 (Nlgn2), Cdc42 guanine nucleotide exchange factor 9 (Arhgef9) BLCAP apoptosis inducing factor (Blcap), and cytoplasmic FMR1 interacting protein 2 (Cyfip2), as well as two noncoding RNA sites in small nucleolar RNA host gene 11 (Snhg11) and the maternally expressed 3 (Meg3) gene. Moreover, significant changes were observed in gene functions and pathways enriched by genes with A-to-I RNA editing in losers and especially winners compared to controls. Our results demonstrate that repeated winning and losing experiences in chronic social conflicts are linked to A-to-I RNA editing pattern difference, underlining its role in the molecular mechanism of agonistic interactions between conspecifics.

7.
J Virol ; 96(11): e0046922, 2022 06 08.
Article En | MEDLINE | ID: mdl-35583324

Coronavirus (CoV) nonstructural protein 1 (nsp1) inhibits cellular gene expression and antagonizes interferon (IFN) response. Porcine epidemic diarrhea virus (PEDV) infects pigs and causes high mortality in neonatal piglets. We hypothesized that a recombinant PEDV carrying mutations at the conserved residues N93 and N95 of nsp1 induces higher IFN responses and is more sensitive to IFN responses, leading to virus attenuation. We mutated PEDV nsp1 N93 and N95 to A93 and A95 to generate the recombinant N93/95A virus using the infectious clone of a highly virulent PEDV strain, PC22A (icPC22A), and evaluated N93/95A virus in vitro and in vivo. Compared with icPC22A, the N93/95A mutant replicated to significantly lower infectious titers, triggered stronger type I and III IFN responses, and was more sensitive to IFN treatment in vitro. To evaluate the pathogenicity and immunogenicity, 5-day-old gnotobiotic piglets were orally inoculated with the N93/95A or icPC22A strain or mock inoculated and then challenged at 22 days postinoculation (dpi) with icPC22A. icPC22A in all pigs (100% [5/5]) caused severe diarrhea and death within 6 dpi. Only one pig (25% [1/4]) died in the N93/95A group. Compared with the icPC22A group, significantly delayed and diminished fecal PEDV shedding was detected in the N93/95A group. Postchallenge, all piglets in N93/95A group were protected from severe diarrhea and death, whereas all pigs in the mock-challenged group developed severe diarrhea, and 25% (1/4) of them died. In summary, nsp1 N93A and N95A mutations attenuated PEDV but retained viral immunogenicity and can be targets for the development of live attenuated vaccines for PEDV. IMPORTANCE PEDV causes porcine epidemic diarrhea (PED) and remains a great threat to the swine industry worldwide because no effective vaccines are available yet. Safe and effective live attenuated vaccines can be designed using reverse genetics to induce lactogenic immunity in pregnant sows to protect piglets from the deadly PED. We found that an engineered PEDV mutant carrying N93A and N95A mutations of nsp1 was partially attenuated and remained immunogenic in neonatal pigs. Our study suggested that nsp1 N93 and N95 can be good targets for the rational design of live attenuated vaccines for PEDV using reverse genetics. Because CoV nsp1 is conserved among alphacoronaviruses (α-CoVs) and betacoronaviruses (ß-CoVs), it may be a good target for vaccine development for other α-CoVs or ß-CoVs.


Coronavirus Infections , Interferons , Porcine epidemic diarrhea virus , Swine Diseases , Viral Nonstructural Proteins , Animals , Animals, Newborn , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Diarrhea/veterinary , Diarrhea/virology , Female , Interferons/immunology , Mutation , Swine , Swine Diseases/immunology , Swine Diseases/virology , Viral Nonstructural Proteins/genetics
8.
Pathogens ; 11(1)2022 Jan 09.
Article En | MEDLINE | ID: mdl-35056027

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.

9.
Article Zh | WPRIM | ID: wpr-924000

Objective @#To discuss and summarize the preventive measures and treatment methods for aspiration/ingestion during dental procedures.@*Methods @# One case of aspiration during an implant operation was reported, and the literature on aspiration/ingestion during oral procedures was reviewed.@*Results@#An implant screwdriver accidentally slipped into the mouth of the patient during implant surgery. The patient experienced no obvious discomfort except a few coughs. The surgeon and assistant paused the procedure immediately to search for the screwdriver, but it was not found. The patient declared that there was no special abnormality, such as breathing disorder or chest distress, so we considered that the foreign body was ingestion. After the implant surgery was completed, no foreign body was found in the stomach via gastroscopy. Chest X-ray and CT showed a dense metal shadow in the lower lobe of the left lung. Under local anesthesia, bronchoscopy and biopsy forceps were used by respiratory physicians to clip out the foreign body. After removal of the foreign body, the patient had no obvious discomfort but a slight cough. Cephalexin and metronidazole were given for three days to prevent infection. Three days later, the patient had no complaints of respiratory discomfort. After reviewing the literature, we found that the operation should be paused immediately after aspiration/ingestion occurs during dental procedures and that the dental chair should be laid down to prevent the foreign body from descending deeper, which may increase the difficulty of removal and cause gastrointestinal and respiratory tract injury. The position of the foreign body should be determined by imaging examination, and the corresponding means to remove the foreign body should be performed.@*Conclusion @# Patients may have no obvious symptoms after aspiration/ingestion during dental procedures, and the foreign body can be removed after imaging examination.

10.
Anim Dis ; 1(1): 2, 2021.
Article En | MEDLINE | ID: mdl-34778876

Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol to facilitating the absorption of fat-soluble nutrients. In the intestines, where enteric viruses replicate, BAs also act as signaling molecules that modulate various biological functions via activation of specific receptors and cell signaling pathways. To date, BAs present either pro-viral or anti-viral effects for the replication of enteric viruses in vivo and in vitro. In this review, we summarized current information on biosynthesis, transportation and metabolism of BAs and the role of BAs in replication of enteric caliciviruses, rotaviruses, and coronaviruses. We also discussed the application of BAs for cell culture adaptation of fastidious enteric caliciviruses and control of virus infection, which may provide novel insights into the development of antivirals and/or disinfectants for enteric viruses.

11.
Cell Biosci ; 11(1): 106, 2021 Jun 07.
Article En | MEDLINE | ID: mdl-34099051

BACKGROUND: Coronavirus (CoV) nonstructural protein 14 (nsp14) has exoribonuclease (ExoN) activity, responsible for proofreading and contributing to replication fidelity. It has been reported that CoVs exhibit variable sensitivity to nsp14-ExoN deficiency. Betacoronavirus murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV were viable upon nsp14-ExoN deficiency. While betacoronavirus Middle East respiratory syndrome (MERS)-CoV and SARS-CoV-2 were non-viable with disabled nsp14-ExoN. In this study, we investigated the nsp14-ExoN deficiency of alphacoronavirus porcine epidemic diarrhea virus (PEDV) in viral pathogenesis using reverse genetics. RESULTS: Eight nsp14-ExoN deficient mutants, targeting the predicted active sites and the Zinc finger or mental-coordinating sites, of PEDV were designed. Only one mutant E191A with a mutation in the Mg2+-binding site was rescued using the infectious clone of PEDV PC22A strain (icPC22A). The passage no.1-3 (P1-3) of E191A grew to very low titers in Vero cells. To evaluate the pathogenesis of the E191A, 4 or 5-day-old gnotobiotic pigs were inoculated orally with 100 TCID50/pig of the E191A-P1, icPC22A, or mock. All mock pigs did not shed virus in feces or show clinical signs. All pigs inoculated with icPC22A shed high viral RNA levels, had severe diarrhea, and died by 6 days post-inoculation (dpi). In contrast, only 3 pigs (3/4, 75%) in the E191A-P1 group shed low levels of viral RNA and 2 pigs had moderate diarrhea at acute infection phase. At 22 dpi, each pig was challenged orally with 106 plaque forming unit of virulent icPC22A. All pigs in the mock group developed severe diarrhea and 2 of the 5 pigs died. Pigs in the E191A-P1 group had less severe diarrhea and no pigs died. Sanger sequencing analysis revealed that the viral genome in the fecal sample of one E191A-P1-inoculated pig and the P4 virus passaged in vitro lost the E191A mutation, suggesting the genetic instability of the E191A mutant. CONCLUSION: The recombinant PEDV variants carrying mutations at the essential functional sites within nsp14-ExoN were either lethal or genetically unstable. Our finding further confirmed the critical role of nsp14-ExoN in CoV life cycle, suggesting that it may be a target for the design of universal anti-CoV drugs.

12.
Vet Microbiol ; 257: 109097, 2021 Jun.
Article En | MEDLINE | ID: mdl-33933854

Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that causes gastroenteritis in pigs and no vaccines or antiviral drugs are available. Bile acids are active factors in intestines and influence the replication of enteric viruses. Currently, the role of bile acids on PDCoV replication is unknown. In this study, we tested the effects of different types of bile acids on the replication of PDCoV in cell culture. We found that physiological concentrations of bile acids chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) had antiviral activity against PDCoV in porcine kidney cell line (LLC-PK1) and porcine small intestinal epithelial cell line (IPEC-J2). In IPEC-J2 cells, CDCA and LCA inhibited PDCoV replication at post-entry stages by inducing the production of interferon (IFN)-λ3 and IFN-stimulated gene 15 (ISG15) via G protein-coupled receptor (GPCR). In summary, bile acids CDCA and LCA restricted PDCoV infection and LCA functioned through a GPCR-IFN-λ3-ISG15 signaling axis in IPEC-J2 cells. Our results may open new avenues for the development of antiviral drugs to treat PDCoV infection in pigs.


Bile Acids and Salts/pharmacology , Chenodeoxycholic Acid/pharmacology , Deltacoronavirus/physiology , Lithocholic Acid/pharmacology , Virus Replication/drug effects , Animals , Bile Acids and Salts/chemistry , Deltacoronavirus/drug effects , Epithelial Cells/virology , Host-Pathogen Interactions , Interferons/immunology , LLC-PK1 Cells , Swine , Swine Diseases/virology
13.
Front Cell Infect Microbiol ; 11: 628327, 2021.
Article En | MEDLINE | ID: mdl-33869076

ECC is a common clinical manifestation of the oral cavity in childhood and Iron deficiency-anemia (IDA) is a high-risk factor but extrinsic black stain on the tooth surface is a protective factor for caries. There is limited information about oral microecological change in early children who suffer from ECC with IDA and extrinsic black stain (BS). This study enrolled 136 children aged 3-6 years. Dental caries and teeth BS were examined. Saliva was collected for 16S rRNA gene and fingertip blood were for Hemoglobin test. There are 93 ECC including 13 with IDA (IDA ECC) and 80 without IDA (NIDA ECC) and 43 caries free (CF) including 17 with BS (BSCF) and 26 without BS (NBS CF). Statistical analysis of microbiota data showed differences of the oral flora in different groups. The oral flora of the IDA ECC group had a high diversity, while the BSCF group had a low diversity. The bacterial genera Bacillus, Moraxella, and Rhodococcus were enriched in the IDA ECC while Neisseria was enriched in the NIDA ECC. Neisseria only exhibited high abundance in the BSCF, and the remaining genera exhibited high abundance in the NBSCF. Interestingly, the BSCF had the same trend as the NIDA ECC, and the opposite trend was observed with IDA ECC. We established random forest classifier using these biomarkers to predict disease outcomes. The random forest classifier achieved the best accuracy in predicting the outcome of caries, anemia and black stain using seven, one and eight biomarkers, respectively; and the accuracies of the classifiers were 93.35%, 94.62% and 95.23%, respectively. Our selected biomarkers can achieve good prediction, suggesting their potential clinical implications.


Anemia, Iron-Deficiency , Dental Caries , Microbiota , Black or African American , Child , Child, Preschool , Coloring Agents , Dental Caries Susceptibility , Humans , RNA, Ribosomal, 16S , Saliva
14.
Viruses ; 13(1)2021 Jan 17.
Article En | MEDLINE | ID: mdl-33477379

Porcine deltacoronavirus (PDCoV) strain OH-FD22 infects poultry and shares high nucleotide identity with sparrow-origin deltacoronaviruses (SpDCoV) ISU73347 and HKU17 strains. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from these SpDCoVs would alter the host and tissue tropism of PDCoV. First, an infectious cDNA clone of PDCoV OH-FD22 strain (icPDCoV) was generated and used to construct chimeric icPDCoVs harboring the S protein of HKU17 (icPDCoV-SHKU17) or the RBD of ISU73347 (icPDCoV-RBDISU). To evaluate their pathogenesis, neonatal gnotobiotic pigs were inoculated orally/oronasally with the recombinant viruses or PDCoV OH-FD22. All pigs inoculated with icPDCoV or OH-FD22 developed severe diarrhea and shed viral RNA at moderate-high levels (7.62-10.56 log10 copies/mL) in feces, and low-moderate levels in nasal swabs (4.92-8.48 log10 copies/mL). No pigs in the icPDCoV-SHKU17 and icPDCoV-RBDISU groups showed clinical signs. Interestingly, low-moderate levels (5.07-7.06 log10 copies/mL) of nasal but not fecal viral RNA shedding were detected transiently at 1-4 days post-inoculation in 40% (2/5) of icPDCoV-SHKU17- and 50% (1/2) of icPDCoV-RBDISU-inoculated pigs. These results confirm that PDCoV infected both the upper respiratory and intestinal tracts of pigs. The chimeric viruses displayed an attenuated phenotype with the loss of tropism for the pig intestine. The SpDCoV S protein and RBD reduced viral replication in pigs, suggesting limited potential for cross-species spillover upon initial passage.


Coronavirus Infections/pathology , Deltacoronavirus/genetics , Intestines/pathology , Respiratory System/pathology , Spike Glycoprotein, Coronavirus/genetics , Viral Tropism/genetics , Amino Acid Motifs , Animals , Bird Diseases/virology , Cell Line , Deltacoronavirus/pathogenicity , Intestines/virology , Recombinant Proteins/genetics , Respiratory System/virology , Sparrows , Swine , Swine Diseases/virology , Virulence/genetics
15.
J Oral Pathol Med ; 50(3): 308-315, 2021 Mar.
Article En | MEDLINE | ID: mdl-31654433

Long non-coding RNAs (lncRNAs) have been shown to be aberrantly expressed in oral squamous cell carcinoma (OSCC), but the biological role and function of BRAF-activated long non-coding RNA (BANCR) in OSCC remain poorly understood. In this study, we found that the expression of BANCR was upregulated in OSCC tissues and cell lines compared to the negative control. The decreased expression of BANCR in vitro markedly inhibited OSCC cell proliferation, migration, and invasion while the opposite was observed for the overexpression of BANCR. The results also showed that the expression of MAPK signaling-related proteins (p-erk, p-akt, and p-p-38) was positively correlated with that of BANCR. Thus, BANCR may play an important role in the tumorigenesis of OSCC, as well as cell proliferation, migration, and invasion of OSCC, and it may be a potential therapeutic target and prognostic factor in OSCC patients.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , RNA, Long Noncoding , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Mouth Neoplasms/genetics , Proto-Oncogene Proteins B-raf/genetics , RNA, Long Noncoding/genetics , Squamous Cell Carcinoma of Head and Neck
16.
J Biomater Appl ; 35(6): 569-578, 2021 01.
Article En | MEDLINE | ID: mdl-32772779

The effect of implantable Zoledronate-PLGA microcapsules (PLGA-ZOL) in periodontitis remains unclear. In this study, we aimed to explore the potential role of PLGA-ZOL in protecting periodontitis and elucidate the underlying mechanism. A rat model of periodontitis was established by ligation the mandibular first molars, then PLGA-ZOL was implanted. The healing volume was scanned by cone-beam computed tomography. Cytokine levels in the gingival tissues were determined by ELISA and RT-PCR. Oxidative stress was indicated by detecting superoxide dismutase concentration and catalase activity. After periodontitis model was successfully established in rats, PLGA-ZOL treatment significantly attenuated alveolar bone loss, as indicated by the increased total healing volume, bone volume/tissue volume and osteoprotegerin level, as well as decreased sRANKL level. PLGA-ZOL treatment also suppressed the inflammatory activities by inhibiting pro-inflammatory cytokine production (TNF-α, IL-1ß) but increasing anti-inflammatory cytokine secretion (IL-10). Furthermore, PLGA-ZOL was found to ameliorate oxidative stress in gingival tissues. In conclusion, PLGA-ZOL microcapsules ameliorate alveolar bone loss, gingival inflammation and oxidative stress in an experimental rat model of periodontitis.


Alveolar Bone Loss/drug therapy , Antioxidants/chemistry , Capsules/chemistry , Inflammation/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Zoledronic Acid/chemistry , Animals , Antioxidants/pharmacology , Catalase/metabolism , Cytokines/metabolism , Disease Models, Animal , Gingiva/metabolism , Humans , Osteoprotegerin/metabolism , Oxidative Stress/drug effects , Prosthesis Implantation , Rats , Superoxide Dismutase/metabolism , Zoledronic Acid/pharmacology
17.
Sensors (Basel) ; 20(11)2020 Jun 11.
Article En | MEDLINE | ID: mdl-32545229

This study investigates the effect of process parameters on neurosurgical bone grinding performance using a miniature surgical diamond wheel. Bone grinding is an important procedure in the expanded endonasal approach for removing the cranial bone and access to the skull base tumor via nasal corridor. Heat and force are generated during the grinding process, which may cause thermal and mechanical damage to the adjacent tissues. This study investigates the effect of grinding process parameters (including the depth of cut, feed rate, and spindle speed) on the bone grinding performance using temperature and force measurement sensors in order to optimize the grinding process. An orthogonal experimental design with a standard orthogonal array, L9 (33), is selected with each parameter in three levels. The experimental results have been statistically analyzed using the range and variance analysis methods in order to determine the importance order of the process parameters. The results indicate that the effect of the cutting depth on the grinding temperature and normal force is the largest, while the effect of the spindle speed on the tangential force is the largest. A high spindle speed would make the temperature rise to a certain extent; however, it significantly reduces the grinding force. At a certain spindle speed, a lower depth of cut and feed rate help to reduce the grinding temperature and force.


Bone and Bones , Mechanical Phenomena , Hot Temperature , Humans , Temperature , Wearable Electronic Devices
18.
Mycopathologia ; 185(3): 485-494, 2020 Jun.
Article En | MEDLINE | ID: mdl-32328890

The aim of this research was to study the effects of different concentrations of magnesium oxide nanoparticles (MgO NPs) on the growth and key virulence factors of Candida albicans (C. albicans). The minimum inhibitory concentration (MIC) of MgO NPs against C. albicans was determined by the micro-broth dilution method. A time-kill curve of MgO NPs and C. albicans was established to investigate the ageing effect of MgO NPs on C. albicans. Crystal violet staining, the MTT assay, and inverted fluorescence microscopy were employed to determine the effects of MgO NPs on C. albicans adhesion, two-phase morphological transformation, biofilm biomass, and metabolic activity. The time-kill curve showed that MgO NPs had fungicidal and antifungal activity against C. albicans in a time- and concentration-dependent manner. Semi-quantitative crystal violet staining and MTT assays showed that MgO NPs significantly inhibited C. albicans biofilm formation and metabolic activity, and the difference was statistically significant (p < 0.001). Inverted fluorescence microscopy showed that MgO NPs could inhibit the formation of C. albicans biofilm hyphae. Adhesion experiments showed that MgO NPs significantly inhibited the initial adhesion of C. albicans (p < 0.001). This study demonstrates that MgO NPs can effectively inhibit the growth, initial adhesion, two-phase morphological transformation, and biofilm formation of C. albicans and is an antifungal candidate.


Antifungal Agents/pharmacology , Candida albicans/drug effects , Magnesium Oxide/pharmacology , Analysis of Variance , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Biofilms/drug effects , Biofilms/growth & development , Biomass , Candida albicans/growth & development , Candida albicans/pathogenicity , Candida albicans/physiology , Magnesium Oxide/administration & dosage , Magnesium Oxide/pharmacokinetics , Microbial Sensitivity Tests , Nanoparticles/administration & dosage , Virulence Factors
19.
Pathogens ; 9(4)2020 Mar 26.
Article En | MEDLINE | ID: mdl-32224931

Porcine epidemic diarrhea (PED) is a highly contagious, intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). PEDV as an emerging and re-emerging epizootic virus of swine causes substantial economic losses to the pig industry in China and other countries. In China, the occurrence of PED shows significant seasonal variations, usually outbreak during the winter season. The epidemic characteristics of PED may be highly correlated with the changes of ambient temperature. However, molecular mechanism on the seasonal occurrence of PED still remains unclear. It has been widely observed that low ambient temperature up-regulates the expression of host heat shock protein 70 (Hsp70). Here, we showed that nucleotide and protein levels of Hsp70 were up-regulated in the intestinal of cold exposed pig and cold exposed Vero E6 cells. We found that overexpression of Hsp70 could increase PEDV mRNA synthesis and protein expression in Vero E6 and IPEC-J2 cells, while the siRNAs mediated knockdown of Hsp70 and VER155008 mediated inhibition of Hsp70 resulted in inhibition of viral mRNA synthesis and protein expression in Vero E6 cells. These data suggested that Hsp70 positively regulated PEDV mRNA synthesis and protein expression, which being helpful for understanding the seasonality of PED epidemics and development of novel antiviral therapies in the future.

20.
J Cell Physiol ; 235(3): 3056-3068, 2020 03.
Article En | MEDLINE | ID: mdl-31538341

Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies worldwide, and its morbidity and mortality have increased in the near term. Consequently, the purpose of the present study was to identify the notable differentially expressed genes (DEGs) involved in their pathogenesis to obtain new biomarkers or potential therapeutic targets for OSCC. The gene expression profiles of the microarray datasets GSE85195, GSE23558, and GSE10121 were obtained from the Gene Expression Omnibus (GEO) database. After screening the DEGs in each GEO dataset, 249 DEGs in OSCC tissues were obtained. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway enrichment analysis was employed to explore the biological functions and pathways of the above DEGs. A protein-protein interaction network was constructed to obtain a central gene. The corresponding total survival information was analyzed in patients with oral cancer from The Cancer Genome Atlas (TCGA). A total of six candidate genes (CXCL10, OAS2, IFIT1, CCL5, LRRK2, and PLAUR) closely related to the survival rate of patients with oral cancer were identified, and expression verification and overall survival analysis of six genes were performed based on TCGA database. Time-dependent receiver operating characteristic curve analysis yields predictive accuracy of the patient's overall survival. At the same time, the six genes were further verified by quantitative real-time polymerase chain reaction using samples obtained from the patients recruited to the present study. In conclusion, the present study identified the prognostic signature of six genes in OSCC for the first time via comprehensive bioinformatics analysis, which could become potential prognostic markers for OCSS and may provide potential therapeutic targets for tumors.


Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Head and Neck Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/pathology , Gene Expression Profiling/methods , Humans , Protein Interaction Maps/genetics , Squamous Cell Carcinoma of Head and Neck/genetics
...