Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4907, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851760

ABSTRACT

Perovskite/silicon tandem solar cells hold great promise for realizing high power conversion efficiency at low cost. However, achieving scalable fabrication of wide-bandgap perovskite (~1.68 eV) in air, without the protective environment of an inert atmosphere, remains challenging due to moisture-induced degradation of perovskite films. Herein, this study reveals that the extent of moisture interference is significantly influenced by the properties of solvent. We further demonstrate that n-Butanol (nBA), with its low polarity and moderate volatilization rate, not only mitigates the detrimental effects of moisture in air during scalable fabrication but also enhances the uniformity of perovskite films. This approach enables us to achieve an impressive efficiency of 29.4% (certified 28.7%) for double-sided textured perovskite/silicon tandem cells featuring large-size pyramids (2-3 µm) and 26.3% over an aperture area of 16 cm2. This advance provides a route for large-scale production of perovskite/silicon tandem solar cells, marking a significant stride toward their commercial viability.

2.
Science ; 383(6685): 855-859, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38386724

ABSTRACT

Scalable fabrication of all-perovskite tandem solar cells is challenging because the narrow-bandgap subcells made of mixed lead-tin (Pb-Sn) perovskite films suffer from nonuniform crystallization and inferior buried perovskite interfaces. We used a dopant from Good's list of biochemical buffers, aminoacetamide hydrochloride, to homogenize perovskite crystallization and used it to extend the processing window for blade-coating Pb-Sn perovskite films and to selectively passivate defects at the buried perovskite interface. The resulting all-perovskite tandem solar module exhibited a certified power conversion efficiency of 24.5% with an aperture area of 20.25 square centimeters.

3.
Adv Mater ; 36(8): e2308370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37938798

ABSTRACT

Wide-bandgap (WBG) perovskite solar cells hold tremendous potential for realizing efficient tandem solar cells. However, nonradiative recombination and carrier transport losses occurring at the perovskite/electron-selective contact (e.g. C60 ) interface present significant obstacles in approaching their theoretical efficiency limit. To address this, a sequential interface engineering (SIE) strategy that involves the deposition of ethylenediamine diiodide (EDAI2 ) followed by sequential deposition of 4-Fluoro-Phenethylammonium chloride (4F-PEACl) is implemented. The SIE technique synergistically narrows the conduction band offset and reduces recombination velocity at the perovskite/C60 interface. The best-performing WBG perovskite solar cell (1.67 eV) delivers a power conversion efficiency (PCE) of 21.8% and an impressive open-circuit voltage of 1.262 V. Moreover, through integration with double-textured silicon featuring submicrometer pyramid structures, a stabilized PCE of 29.6% is attained for a 1 cm2 monolithic perovskite/silicon tandem cell (certified PCE of 29.0%).

4.
Adv Mater ; 36(2): e2308706, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37983869

ABSTRACT

All-perovskite tandem solar cells offer the potential to surpass the Shockley-Queisser (SQ) limit efficiency of single-junction solar cells while maintaining the advantages of low-cost and high-productivity solution processing. However, scalable solution processing of electron transport layer (ETL) in p-i-n structured perovskite solar subcells remains challenging due to the rough perovskite film surface and energy level mismatch between ETL and perovskites. Here, scalable solution processing of hybrid fullerenes (HF) with blade-coating on both wide-bandgap (≈1.80 eV) and narrow-bandgap (≈1.25 eV) perovskite films in all-perovskite tandem solar modules is developed. The HF, comprising a mixture of fullerene (C60 ), phenyl C61 butyric acid methyl ester, and indene-C60 bisadduct, exhibits improved conductivity, superior energy level alignment with both wide- and narrow-bandgap perovskites, and reduced interfacial nonradiative recombination when compared to the conventional thermal-evaporated C60 . With scalable solution-processed HF as the ETLs, the all-perovskite tandem solar modules achieve a champion power conversion efficiency of 23.3% (aperture area = 20.25 cm2 ). This study paves the way to all-solution processing of low-cost and high-efficiency all-perovskite tandem solar modules in the future.

5.
Nat Commun ; 14(1): 1819, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37002238

ABSTRACT

The commonly-used superstrate configuration (depositing front subcell first and then depositing back subcell) in all-perovskite tandem solar cells is disadvantageous for long-term stability due to oxidizable narrow-bandgap perovskite assembled last and easily exposable to air. Here we reverse the processing order and demonstrate all-perovskite tandems in a substrate configuration (depositing back subcell first and then depositing front subcell) to bury oxidizable narrow-bandgap perovskite deep in the device stack. By using guanidinium tetrafluoroborate additive in wide-bandgap perovskite subcell, we achieve an efficiency of 25.3% for the substrate-configured all-perovskite tandem cells. The unencapsulated devices exhibit no performance degradation after storage in dry air for 1000 hours. The substrate configuration also widens the choice of flexible substrates: we achieve 24.1% and 20.3% efficient flexible all-perovskite tandem solar cells on copper-coated polyethylene naphthalene and copper metal foil, respectively. Substrate configuration offers a promising route to unleash the commercial potential of all-perovskite tandem solar cells.

6.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36234529

ABSTRACT

The acquiring of superhydrophilic surfaces attracts the strong interest in self-cleaning, anti-fogging and anti-icing fields based on the unique features. However, the persistent time of superhydrophilic surfaces is still facing a big challenge because of easily adsorbing hydrophobic groups. Here, we propose a strategy to achieve a superhydrophilicity persisting for an unprecedently long time on sapphire surfaces, by compounding the femtosecond laser-induced hierarchical structures and the subsequent varnish of TiO2. The superhydrophilic effect (with a contact angle of CA = 0°) created by our method can be well prolonged to at least 180 days, even for its storage in air without additional illumination of UV lights. Based on comprehensive investigations, we attribute the underlying mechanisms to the coordination of laser-induced metal ions on the material surface via TiO2 doping, which not only prevents the adsorption of the nonpolar hydrocarbon groups, but also modulates the photo-response properties of TiO2. In addition, further experiments demonstrate the excellent anti-fogging properties of our prepared samples. This investigation provides a new perspective for further enhancing the durability of superhydrophilicity surfaces.

7.
ACS Appl Mater Interfaces ; 14(24): 28154-28162, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35687699

ABSTRACT

The instability of perovskite optoelectronic devices remains a big barrier to their commercialization. The instability caused by external stimuli has been addressed by encapsulation, such as humidity, oxygen, heat, and ultraviolet light. However, the intrinsic instability of perovskite materials due to the lattice strain has not been fully addressed, which affects the physical properties and device performance to a great extent. Tuning the lattice strain by controlling the perovskite composition and ratio is an effective way to further develop efficient and stable devices. Herein, we prepare a series of triple-cation and mixed-halide (FAPbI3)x(MAPbBr3)y(CsPbI3)1-x-y perovskite single-crystal thin films and study the effect of lattice strain on the perovskite optoelectronic properties. Especially, the perovskite photodetector with a horizontal structure based on (FAPbI3)0.79(MAPbBr3)0.13(CsPbI3)0.08 single-crystal thin films exhibits excellent performance with an enhanced responsivity of 40 A/W, high detectivity of 1.9 × 1013 Jones, external quantum efficiency of 9100%, and superior stability. This can be explained by the fact that the optimal coordination between each element leads to the release of lattice strain and further produces low defect density and long carrier lifetime in (FAPbI3)0.79(MAPbBr3)0.13(CsPbI3)0.08 single-crystal thin films. This research shows the significance of ion ratios in tuning lattice strain and determining the intrinsic device performance and makes the perovskite (FAPbI3)0.79(MAPbBr3)0.13(CsPbI3)0.08 a promising candidate for the next generation of optoelectronic devices.

8.
Light Sci Appl ; 9: 111, 2020.
Article in English | MEDLINE | ID: mdl-32637078

ABSTRACT

Defect density is one of the most significant characteristics of perovskite single crystals (PSCs) that determines their optical and electrical properties, but few strategies are available to tune this property. Here, we demonstrate that voltage regulation is an efficient method to tune defect density, as well as the optical and electrical properties of PSCs. A three-step carrier transport model of MAPbBr3 PSCs is proposed to explore the defect regulation mechanism and carrier transport dynamics via an applied bias. Dynamic and steady-state photoluminescence measurements subsequently show that the surface defect density, average carrier lifetime, and photoluminescence intensity can be efficiently tuned by the applied bias. In particular, when the regulation voltage is 20 V (electrical poling intensity is 0.167 V µm-1), the surface defect density of MAPbBr3 PSCs is reduced by 24.27%, the carrier lifetime is prolonged by 32.04%, and the PL intensity is increased by 112.96%. Furthermore, a voltage-regulated MAPbBr3 PSC memristor device shows an adjustable multiresistance, weak ion migration effect and greatly enhanced device stability. Voltage regulation is a promising engineering technique for developing advanced perovskite optoelectronic devices.

9.
Small ; 16(24): e2001417, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32407005

ABSTRACT

Triple-cation mixed metal halide perovskites are important optoelectronic materials due to their high photon to electron conversion efficiency, low exciton binding energy, and good thermal stability. However, the perovskites have low photon to electron conversion efficiency in near-infrared (NIR) due to their weak intrinsic absorption at longer wavelength, especially near the band edge and over the bandgap wavelength. A plasmonic functionalized perovskite photodetector (PD) is designed and fabricated in this study, in which the perovskite ((Cs0.06 FA0.79 MA0.15 )Pb(I0.85 Br0.15 )3 ) active materials are spin-coated on the surface of Au bowtie nanoantenna (BNA) arrays substrate. Under 785 nm laser illumination, near the bandedge of perovskite, the fabricated BNA-based plasmonic PD exhibits ≈2962% enhancement in the photoresponse over the Si/SiO2 -based normal PD. Moreover, the detectivity of the plasmonic PD has a value of 1.5 × 1012 with external quantum efficiency as high as 188.8%, more than 30 times over the normal PD. The strong boosting in the plasmonic PD performance is attributed to the enhanced electric field around BNA arrays through the coupling of localized surface plasmon resonance. The demonstrated BNA-perovskite design can also be used to enhance performance of other optoelectronic devices, and the concept can be extended to other spectral regions with different active materials.

10.
Lab Chip ; 20(2): 414-423, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31867593

ABSTRACT

In this paper, we proposed a novel approach for rapid and flexible fabrication of self-driven microfluidic surface enhanced Raman scattering (SERS) chips for quantitative analysis of Hg2+ by femtosecond laser direct writing. In contrast to traditional microfluidic chips, the microchannels of the device can drive a liquid sample flow without external driving force. The sample flow speed is tunable since the wettability and capillarity properties of the channels, which depend on the roughness and the inner diameter of the microchannels, can be controlled by optimizing the laser processing parameters. The SERS active detection sites, which exhibit high enhancement effects and fine reproducibility, were integrated through the femtosecond laser-induced periodic surface structures (LIPSS), followed by 30 nm Ag deposition. The SERS performance of the as-prepared microfluidic SERS detection chip was studied with R6G as probe molecules. The quantitative analysis of Hg2+ was realized by simply injecting the Hg2+ sample and the probe molecules R6G from the two inlets, separately, and collecting the SERS signal at the detection site. The lowest detection limit for Hg2+ is 10-9 M. It should be mentioned that this study is not only limited to Hg2+ quantitative analysis, but is also mainly aimed to develop a new technique for the design and fabrication of novel self-driven microfluidic devices depending on practical application requirements.

SELECTION OF CITATIONS
SEARCH DETAIL
...