Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
bioRxiv ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39026697

ABSTRACT

Skeletal muscle health and function is a critical determinant of clinical outcomes in patients with peripheral arterial disease (PAD). Herein, we identify fatty infiltration, the ectopic deposition of adipocytes in skeletal muscle, as a histological hallmark of end-stage PAD, also known as chronic limb threatening ischemia (CLTI). Leveraging single cell transcriptome mapping in mouse models of PAD, we identify a pro-adipogenic mesenchymal stromal cell population marked by expression of Vcam1 (termed Vcam1+ FAPs) that expands in the ischemic limb. Mechanistically, we identify Sfrp1 and Nr3c1 as regulators of Vcam1+ FAP adipogenic differentiation. Loss of Sfrp1 and Nr3c1 impair Vcam1+ FAP differentiation into adipocytes in vitro. Finally, we show that Vcam1+ FAPs are enriched in human CLTI patients. Collectively, our results identify a pro-adipogenic FAP subpopulation in CLTI patients and provide a potential therapeutic target for muscle regeneration in PAD.

2.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775155

ABSTRACT

Physician-scientists play a crucial role in advancing medical knowledge and patient care, yet the long periods of time required to complete training may impede expansion of this workforce. We examined the relationship between postgraduate training and time to receipt of NIH or Veterans Affairs career development awards (CDAs) for physician-scientists in internal medicine. Data from NIH RePORTER were analyzed for internal medicine residency graduates who received specific CDAs (K08, K23, K99, or IK2) in 2022. Additionally, information on degrees and training duration was collected. Internal medicine residency graduates constituted 19% of K awardees and 28% of IK2 awardees. Of MD-PhD internal medicine-trained graduates who received a K award, 92% received a K08 award; of MD-only graduates who received a K award, a majority received a K23 award. The median time from medical school graduation to CDA was 9.6 years for K awardees and 10.2 years for IK2 awardees. The time from medical school graduation to K or IK2 award was shorter for US MD-PhD graduates than US MD-only graduates. We propose that the time from medical school graduation to receipt of CDAs must be shortened to accelerate training and retention of physician-scientists.


Subject(s)
Education, Medical, Graduate , Internal Medicine , Humans , Internal Medicine/education , United States , Internship and Residency/statistics & numerical data , Biomedical Research/education , Physicians/statistics & numerical data , Research Personnel/statistics & numerical data , Research Personnel/education , Time Factors , Awards and Prizes , National Institutes of Health (U.S.) , United States Department of Veterans Affairs , Male , Female
3.
Genome Med ; 15(1): 95, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37950327

ABSTRACT

BACKGROUND: Chronic limb-threatening ischemia (CLTI), a severe manifestation of peripheral arterial disease (PAD), is associated with a 1-year limb amputation rate of approximately 15-20% and substantial mortality. A key feature of CLTI is the compromised regenerative ability of skeletal muscle; however, the mechanisms responsible for this impairment are not yet fully understood. In this study, we aim to delineate pathological changes at both the cellular and transcriptomic levels, as well as in cell-cell signaling pathways, associated with compromised muscle regeneration in limb ischemia in both human tissue samples and murine models of CLTI. METHODS: We performed single-cell transcriptome analysis of ischemic and non-ischemic muscle from the same CLTI patients and from a murine model of CLTI. In both datasets, we analyzed gene expression changes in macrophage and muscle satellite cell (MuSC) populations as well as differential cell-cell signaling interactions and differentiation trajectories. RESULTS: Single-cell transcriptomic profiling and immunofluorescence analysis of CLTI patient skeletal muscle demonstrated that ischemic-damaged tissue displays a pro-inflammatory macrophage signature. Comparable results were observed in a murine CLTI model. Moreover, integrated analyses of both human and murine datasets revealed premature differentiation of MuSCs to be a key feature of failed muscle regeneration in the ischemic limb. Furthermore, in silico inferences of intercellular communication and in vitro assays highlight the importance of macrophage-MuSC signaling in ischemia induced muscle injuries. CONCLUSIONS: Collectively, our research provides the first single-cell transcriptome atlases of skeletal muscle from CLTI patients and a murine CLTI model, emphasizing the crucial role of macrophages and inflammation in regulating muscle regeneration in CLTI through interactions with MuSCs.


Subject(s)
Satellite Cells, Skeletal Muscle , Humans , Animals , Mice , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Muscle, Skeletal/metabolism , Ischemia/metabolism , Ischemia/pathology , Cell Differentiation , Regeneration , Macrophages/metabolism , Risk Factors , Treatment Outcome , Retrospective Studies
4.
Elife ; 122023 10 02.
Article in English | MEDLINE | ID: mdl-37782020

ABSTRACT

The growing complexities of clinical medicine and biomedical research have clouded the career path for physician-scientists. In this perspective piece, we address one of the most opaque career stage transitions along the physician-scientist career path, the transition from medical school to research-focused internal medicine residency programs, or physician-scientist training programs (PSTPs). We present the perspectives of medical scientist training program (MSTP) and PSTP directors on critical features of PSTPs that can help trainees proactively align their clinical and scientific training for successful career development. We aim to provide both trainees and MSTP directors with a conceptual framework to better understand and navigate PSTPs. We also offer interview-specific questions to help trainees gather data and make informed decisions in choosing a residency program that best supports their career.


Subject(s)
Biomedical Research , Internship and Residency , Physicians , Humans , Education, Graduate , Biomedical Research/education , Career Choice
5.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066299

ABSTRACT

Chronic limb-threatening ischemia (CLTI), representing the end-stage of peripheral arterial disease (PAD), is associated with a one-year limb amputation rate of ∻15-20% and significant mortality. A key characteristic of CLTI is the failure of the innate regenerative capacity of skeletal muscle, though the underlying mechanisms remain unclear. Here, single-cell transcriptome analysis of ischemic and non-ischemic muscle from the same CLTI patients demonstrated that ischemic-damaged tissue is enriched with pro-inflammatory macrophages. Comparable results were also observed in a murine CLTI model. Importantly, integrated analyses of both human and murine data revealed premature differentiation of muscle satellite cells (MuSCs) in damaged tissue and indications of defects in intercellular signaling communication between MuSCs and their inflammatory niche. Collectively, our research provides the first single-cell transcriptome atlases of skeletal muscle from CLTI patients and murine models, emphasizing the crucial role of macrophages and inflammation in regulating muscle regeneration in CLTI through interactions with MuSCs.

6.
Front Cardiovasc Med ; 10: 1118738, 2023.
Article in English | MEDLINE | ID: mdl-36937923

ABSTRACT

Skeletal muscle injury in peripheral artery disease (PAD) has been attributed to vascular insufficiency, however evidence has demonstrated that muscle cell responses play a role in determining outcomes in limb ischemia. Here, we demonstrate that genetic ablation of Pax7+ muscle progenitor cells (MPCs) in a model of hindlimb ischemia (HLI) inhibited muscle regeneration following ischemic injury, despite a lack of morphological or physiological changes in resting muscle. Compared to control mice (Pax7WT), the ischemic limb of Pax7-deficient mice (Pax7Δ) was unable to generate significant force 7 or 28 days after HLI. A significant increase in adipose was observed in the ischemic limb 28 days after HLI in Pax7Δ mice, which replaced functional muscle. Adipogenesis in Pax7Δ mice corresponded with a significant increase in PDGFRα+ fibro/adipogenic progenitors (FAPs). Inhibition of FAPs with batimastat decreased muscle adipose but increased fibrosis. In vitro, Pax7Δ MPCs failed to form myotubes but displayed increased adipogenesis. Skeletal muscle from patients with critical limb threatening ischemia displayed increased adipose in more ischemic regions of muscle, which corresponded with fewer satellite cells. Collectively, these data demonstrate that Pax7+ MPCs are required for muscle regeneration after ischemia and suggest that muscle regeneration may be an important therapeutic target in PAD.

7.
J Ovarian Res ; 15(1): 114, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36266675

ABSTRACT

BACKGROUND: Epithelial ovarian cancer (OC) is the most lethal gynecological malignancy and patients present with significant metastatic burden, particularly to the adipose-rich microenvironment of the omentum. Recent evidence has highlighted the importance of metabolic adaptations in enabling this metastasis, leading to significant interest in evolving the arsenal of tools used to study OC metabolism. In this study, we demonstrate the capability of genetically encoded fluorescent biosensors to study OC, with a focus on 3D organoid models that better recapitulate in vivo tumor microenvironments. MATERIALS AND METHODS: Plasmids encoding the metabolic biosensors HyPer, iNap, Peredox, and Perceval were transfected into 15 ovarian cancer cell lines to assay oxidative stress, NADPH/NADP+, NADH/NAD+, and ATP/ADP, respectively. Fluorescence readings were used to assay dynamic metabolic responses to omental conditioned media (OCM) and 100 µM carboplatin treatment. SKOV3 cells expressing HyPer were imaged as 2D monolayers, 3D organoids, and as in vivo metastases via an intravital omental window. We further established organoids from ascites collected from Stage III/IV OC patients with carboplatin-resistant or carboplatin-sensitive tumors (n = 8 total). These patient-derived organoids (PDOs) were engineered to express HyPer, and metabolic readings of oxidative stress were performed during treatment with 100 µM carboplatin. RESULTS: Exposure to OCM or carboplatin induced heterogenous metabolic changes in 15 OC cell lines, as measured using metabolic sensors. Oxidative stress of in vivo omental metastases, measured via intravital imaging of metastasizing SKOV3-HyPer cells, was more closely recapitulated by SKOV3-HyPer organoids than by 2D monolayers. Finally, carboplatin treatment of HyPer-expressing PDOs induced higher oxidative stress in organoids derived from carboplatin-resistant patients than from those derived from carboplatin-sensitive patients. CONCLUSIONS: Our study showed that biosensors provide a useful method of studying dynamic metabolic changes in preclinical models of OC, including 3D organoids and intravital imaging. As 3D models of OC continue to evolve, the repertoire of biosensors will likely serve as valuable tools to probe the metabolic changes of clinical importance in OC.


Subject(s)
Biosensing Techniques , Ovarian Neoplasms , Humans , Female , Carboplatin/therapeutic use , Carcinoma, Ovarian Epithelial , NADP/therapeutic use , NAD/therapeutic use , Culture Media, Conditioned , Ovarian Neoplasms/metabolism , Adenosine Diphosphate/therapeutic use , Adenosine Triphosphate/therapeutic use , Tumor Microenvironment
8.
Development ; 149(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36134690

ABSTRACT

Heart regeneration requires multiple cell types to enable cardiomyocyte (CM) proliferation. How these cells interact to create growth niches is unclear. Here, we profile proliferation kinetics of cardiac endothelial cells (CECs) and CMs in the neonatal mouse heart and find that they are spatiotemporally coupled. We show that coupled myovascular expansion during cardiac growth or regeneration is dependent upon VEGF-VEGFR2 signaling, as genetic deletion of Vegfr2 from CECs or inhibition of VEGFA abrogates both CEC and CM proliferation. Repair of cryoinjury displays poor spatial coupling of CEC and CM proliferation. Boosting CEC density after cryoinjury with virus encoding Vegfa enhances regeneration. Using Mendelian randomization, we demonstrate that circulating VEGFA levels are positively linked with human myocardial mass, suggesting that Vegfa can stimulate human cardiac growth. Our work demonstrates the importance of coupled CEC and CM expansion and reveals a myovascular niche that may be therapeutically targeted for heart regeneration.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Animals , Cell Proliferation , Endothelial Cells/physiology , Heart/physiology , Humans , Infant, Newborn , Mice , Myocytes, Cardiac/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
9.
Cell Rep ; 39(13): 111012, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767962

ABSTRACT

Ovarian cancer (OC) is the most lethal gynecological malignancy, with aggressive metastatic disease responsible for the majority of OC-related deaths. In particular, OC tumors preferentially metastasize to and proliferate rapidly in the omentum. Here, we show that metastatic OC cells experience increased oxidative stress in the omental microenvironment. Metabolic reprogramming, including upregulation of the pentose phosphate pathway (PPP), a key cellular redox homeostasis mechanism, allows OC cells to compensate for this challenge. Inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, reduces tumor burden in pre-clinical models of OC, suggesting that this adaptive metabolic dependency is important for OC omental metastasis.


Subject(s)
Glucosephosphate Dehydrogenase , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Female , Glucosephosphate Dehydrogenase/metabolism , Humans , Omentum/metabolism , Oxidative Stress , Pentose Phosphate Pathway , Tumor Microenvironment
10.
JCI Insight ; 7(6)2022 03 22.
Article in English | MEDLINE | ID: mdl-35315364

ABSTRACT

Postgraduate physician-scientist training programs (PSTPs) enhance the experiences of physician-scientist trainees following medical school graduation. PSTPs usually span residency and fellowship training, but this varies widely by institution. Applicant competitiveness for these programs would be enhanced, and unnecessary trainee anxiety relieved, by a clear understanding of what factors define a successful PSTP matriculant. Such information would also be invaluable to PSTP directors and would allow benchmarking of their admissions processes with peer programs. We conducted a survey of PSTP directors across the US to understand the importance they placed on components of PSTP applications. Of 41 survey respondents, most were from internal medicine and pediatrics residency programs. Of all components in the application, two elements were considered very important by a majority of PSTP directors: (a) having one or more first-author publications and (b) the thesis advisor's letter. Less weight was consistently placed on factors often considered more relevant for non-physician-scientist postgraduate applicants - such as US Medical Licensing Examination scores, awards, and leadership activities. The data presented here highlight important metrics for PSTP applicants and directors and suggest that indicators of scientific productivity and commitment to research outweigh traditional quantitative measures of medical school performance.


Subject(s)
Internship and Residency , Physicians , Child , Fellowships and Scholarships , Humans , Research Personnel , Surveys and Questionnaires
11.
NPJ Syst Biol Appl ; 7(1): 34, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34417472

ABSTRACT

The Ang-Tie signaling pathway is an important vascular signaling pathway regulating vascular growth and stability. Dysregulation in the pathway is associated with vascular dysfunction and numerous diseases that involve abnormal vascular permeability and endothelial cell inflammation. The understanding of the molecular mechanisms of the Ang-Tie pathway has been limited due to the complex reaction network formed by the ligands, receptors, and molecular regulatory mechanisms. In this study, we developed a mechanistic computational model of the Ang-Tie signaling pathway validated against experimental data. The model captures and reproduces the experimentally observed junctional localization and downstream signaling of the Ang-Tie signaling axis, as well as the time-dependent role of receptor Tie1. The model predicts that Tie1 modulates Tie2's response to the context-dependent agonist Ang2 by junctional interactions. Furthermore, modulation of Tie1's junctional localization, inhibition of Tie2 extracellular domain cleavage, and inhibition of VE-PTP are identified as potential molecular strategies for potentiating Ang2's agonistic activity and rescuing Tie2 signaling in inflammatory endothelial cells.


Subject(s)
Biological Phenomena , Receptor, TIE-2 , Endothelial Cells/metabolism , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Signal Transduction , Systems Biology
13.
iScience ; 20: 497-511, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31655061

ABSTRACT

The angiopoietin-Tie signaling pathway is an important vascular signaling pathway involved in angiogenesis, vascular stability, and quiescence. Dysregulation in the pathway is linked to the impairments in vascular function associated with many diseases, including cancer, ocular diseases, systemic inflammation, and cardiovascular diseases. The present study uses a computational signaling pathway model validated against experimental data to quantitatively study various mechanistic aspects of the angiopoietin-Tie signaling pathway, including receptor activation, trafficking, turnover, and molecular mechanisms of its regulation. The model provides mechanistic insights into the controversial role of Ang2 and its regulators vascular endothelial protein tyrosine phosphatase (VE-PTP) and Tie1 and predicts synergistic effects of inhibition of VE-PTP, Tie1, and Tie2 cleavage on enhancing the vascular protective actions of Tie2.

14.
J Cell Physiol ; 234(4): 4432-4444, 2019 04.
Article in English | MEDLINE | ID: mdl-30256393

ABSTRACT

The pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ m ) under normoxic conditions but lower Δ Ψ m after hypoxia/reoxygenation (H/R). In addition, Δ Ψ m in Tg26 myocytes failed to recover after Ca 2+ challenge. Functionally, mitochondrial Ca 2+ uptake was severely impaired in Tg26 myocytes. Basal and maximal oxygen consumption rates (OCR) were lower in normoxic Tg26 myocytes, and further reduced after H/R. Complex I subunit and ATP levels were lower in Tg26 hearts. Post-H/R, mitochondrial superoxide (O 2•- ) levels were higher in Tg26 compared to WT myocytes. Overexpression of B-cell lymphoma 2-associated athanogene 3 (BAG3) reduced O 2•- levels in hypoxic WT and Tg26 myocytes back to normal. Under normoxic conditions, single myocyte contraction dynamics were similar between WT and Tg26 myocytes. Post-H/R and in the presence of isoproterenol, myocyte contraction amplitudes were lower in Tg26 myocytes. BAG3 overexpression restored Tg26 myocyte contraction amplitudes to those measured in WT myocytes post-H/R. Coimmunoprecipitation experiments demonstrated physical association of BAG3 and the HIV protein Tat. We conclude: (a) Under basal conditions, mitochondrial Ca 2+ uptake, OCR, and ATP levels were lower in Tg26 myocytes; (b) post-H/R, Δ Ψ m was lower, mitochondrial O 2•- levels were higher, and contraction amplitudes were reduced in Tg26 myocytes; and (c) BAG3 overexpression decreased O 2•- levels and restored contraction amplitudes to normal in Tg26 myocytes post-H/R in the presence of isoproterenol.


Subject(s)
Cardiomyopathies/metabolism , Energy Metabolism , HIV Infections/complications , HIV-1/genetics , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Cardiomyopathies/virology , Cell Hypoxia , Cells, Cultured , Disease Models, Animal , HIV Infections/virology , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart/virology , Myocardial Contraction , Myocytes, Cardiac/virology , Oxidation-Reduction , Oxidative Stress , Oxygen Consumption , Reactive Oxygen Species/metabolism , Signal Transduction , Ventricular Function, Left
15.
JAMA Cardiol ; 3(10): 929-938, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30140897

ABSTRACT

Importance: The prevalence of nonischemic dilated cardiomyopathy (DCM) is greater in individuals of African ancestry than in individuals of European ancestry. However, little is known about whether the difference in prevalence or outcomes is associated with functional genetic variants. Objective: We hypothesized that Bcl2-associated anthanogene 3 (BAG3) genetic variants were associated with outcomes in individuals of African ancestry with DCM. Design: This multicohort study of the BAG3 genotype in patients of African ancestry with dilated cardiomyopathy uses DNA obtained from African American individuals enrolled in 3 clinical studies: the Genetic Risk Assessment of African Americans With Heart Failure (GRAHF) study; the Intervention in Myocarditis and Acute Cardiomyopathy Trial-2 (IMAC-2) study; and the Genetic Risk Assessment of Cardiac Events (GRACE) study. Samples of DNA were also acquired from the left ventricular myocardium of patients of African ancestry who underwent heart transplant at the University of Colorado and University of Pittsburgh. Main Outcomes and Measures: The primary end points were the prevalence of BAG3 mutations in African American individuals and event-free survival in participants harboring functional BAG3 mutations. Results: Four BAG3 genetic variants were identified; these were expressed in 42 of 402 African American individuals (10.4%) with nonischemic heart failure and 9 of 107 African American individuals (8.4%) with ischemic heart failure but were not present in a reference population of European ancestry (P < .001). The variants included 2 nonsynonymous single-nucleotide variants; 1 three-nucleotide in-frame insertion; and 2 single-nucleotide variants that were linked in cis. The presence of BAG3 variants was associated with a nearly 2-fold (hazard ratio, 1.97 [95% CI, 1.19-3.24]; P = .01) increase in cardiac events in carriers compared with noncarriers. Transfection of transformed adult human ventricular myocytes with plasmids expressing the 4 variants demonstrated that each variant caused an increase in apoptosis and a decrease in autophagy when samples were subjected to the stress of hypoxia-reoxygenation. Conclusions and Relevance: This study demonstrates that genetic variants in BAG3 found almost exclusively in individuals of African ancestry were not causative of disease but were associated with a negative outcome in patients with a dilated cardiomyopathy through modulation of the function of BAG3. The results emphasize the importance of biological differences in causing phenotypic variance across diverse patient populations, the need to include diverse populations in genetic cohorts, and the importance of determining the pathogenicity of genetic variants.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Black or African American/genetics , Cardiomyopathy, Dilated/ethnology , Mutation , White People/genetics , Animals , Cardiomyopathy, Dilated/genetics , Case-Control Studies , Disease Models, Animal , Female , Genetic Predisposition to Disease , Humans , Male , Mice , Prevalence , Prognosis , Sequence Analysis, DNA , Survival Analysis
16.
J Cell Physiol ; 233(9): 6319-6326, 2018 09.
Article in English | MEDLINE | ID: mdl-29323723

ABSTRACT

Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid protein that is found predominantly in the heart, skeletal muscle, and many cancers. Deletions and truncations in BAG3 that result in haplo-insufficiency have been associated with the development of dilated cardiomyopathy. To study the cellular and molecular events attributable to BAG3 haplo-insufficiency we generated a mouse in which one allele of BAG3 was flanked by loxP recombination sites (BAG3fl/+ ). Mice were crossed with α-MHC-Cre mice in order to generate mice with cardiac-specific haplo-insufficiency (cBAG3+/-) and underwent bi-weekly echocardiography to assess their cardiac phenotype. By 10 weeks of age, cBAG3+/- mice demonstrated increased heart size and diminished left ventricular ejection fraction when compared with non-transgenic littermates (Cre-/- BAG3fl/+ ). Contractility in adult myocytes isolated from cBAG3+/- mice were similar to those isolated from control mice at baseline, but showed a significantly decreased response to adrenergic stimulation. Intracellular calcium ([Ca2+ ]i ) transient amplitudes in myocytes isolated from cBAG3+/- mice were also similar to myocytes isolated from control mice at baseline but were significantly lower than myocytes from control mice in their response to isoproterenol. BAG3 haplo-insufficiency was also associated with decreased autophagy flux and increased apoptosis. Taken together, these results suggest that mice in which BAG3 has been deleted from a single allele provide a model that mirrors the biology seen in patients with heart failure and BAG3 haplo-insufficiency.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis/physiology , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Adrenergic, beta/metabolism , Ventricular Dysfunction, Left/metabolism , Adrenergic Agents/pharmacology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Calcium/metabolism , Cardiomyopathy, Dilated/metabolism , Heart Failure/metabolism , Isoproterenol/pharmacology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Phenotype
17.
J Cell Physiol ; 233(2): 748-758, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28493473

ABSTRACT

Cardiovascular disease remains a leading cause of morbidity and mortality in HIV-positive patients, even in those whose viral loads are well controlled with antiretroviral therapy. However, the underlying molecular events responsible for the development of cardiac disease in the setting of HIV remain unknown. The HIV-encoded Tat protein plays a critical role in the activation of HIV gene expression and profoundly impacts homeostasis in both HIV-infected cells and uninfected cells that have taken up released Tat via a bystander effect. Since cardiomyocyte function, including excitation-contraction coupling, greatly depends on energy provided by the mitochondria, in this study, we performed a series of experiments to assess the impact of Tat on mitochondrial function and bioenergetics pathways in a primary cell culture model derived from neonatal rat ventricular cardiomyocytes (NRVCs). Our results show that the presence of Tat in cardiomyocytes is accompanied by a decrease in oxidative phosphorylation, a decline in the levels of ATP, and an accumulation of reactive oxygen species (ROS). Tat impairs the uptake of mitochondrial Ca2+ ([Ca2+ ]m ) and the electrophysiological activity of cardiomyocytes. Tat also affects the protein clearance pathway and autophagy in cardiomyocytes under stress due to hypoxia-reoxygenation conditions. A reduction in the level of ubiquitin along with dysregulated degradation of autophagy proteins including SQSTM1/p62 and a reduction of LC3 II were detected in cardiomyocytes harboring Tat. These results suggest that, by targeting mitochondria and protein quality control, Tat significantly impacts bioenergetics and autophagy resulting in dysregulation of cardiomyocyte health and homeostasis.


Subject(s)
Energy Metabolism , HIV-1/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Autophagy , Calcium/metabolism , Calcium Channels/metabolism , Cell Hypoxia , Cells, Cultured , Host-Pathogen Interactions , Membrane Potentials , Microtubule-Associated Proteins/metabolism , Mitochondria, Heart/virology , Mitophagy , Myocytes, Cardiac/virology , Oxidative Phosphorylation , Primary Cell Culture , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein/metabolism , Signal Transduction , Time Factors
19.
Circulation ; 136(3): 281-296, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28442482

ABSTRACT

BACKGROUND: Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1, that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. METHODS: We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. RESULTS: We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6-Lsq1-3). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3Ile81, but not BAG3Met81, improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3Ile81 (n=9), but not BAG3Met81 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3Met81, BAG3Ile81 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. CONCLUSIONS: Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle function in the setting of ischemia.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Autophagy/genetics , Genetic Variation/genetics , Hindlimb/blood supply , Ischemia/genetics , Muscular Diseases/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Line, Transformed , Hindlimb/pathology , Ischemia/pathology , Ischemia/prevention & control , Mice , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Muscular Diseases/pathology , Muscular Diseases/prevention & control , Protein Binding/physiology
20.
Cardiovasc Res ; 113(1): 81-89, 2017 01.
Article in English | MEDLINE | ID: mdl-28069704

ABSTRACT

AIMS: Atherosclerosis is a chronic inflammatory disease occurring within the artery wall. A crucial step in atherogenesis is the infiltration and retention of monocytes into the subendothelial space of large arteries induced by chemokines and growth factors. Angiopoietin-1 (Ang-1) regulates angiogenesis and reduces vascular permeability and has also been reported to promote monocyte migration in vitro. We investigated the role of Ang-1 in atherosclerosis-prone apolipoprotein-E (Apo-E) knockout mouse. METHODS AND RESULTS: Apo-E knockout (Apo-E-/-) mice fed a western or normal chow diet received a single iv injection of adenovirus encoding Ang-1 or control vector. Adenovirus-mediated systemic expression of Ang-1 induced a significant increase in early atherosclerotic lesion size and monocyte/macrophage accumulation compared with control animals receiving empty vector. Ang-1 significantly increased plasma MCP-1 and VEGF levels as measured by ELISA. FACS analysis showed that Ang-1 selectively increased inflammatory Gr1+ monocytes in the circulation, while the cell-surface expression of CD11b, which mediates monocyte emigration, was significantly reduced. CONCLUSIONS: Ang-1 specifically increases circulating Gr1+ inflammatory monocytes and increases monocyte/macrophage retention in atherosclerotic plaques, thereby contributing to development of atherosclerosis.


Subject(s)
Angiopoietin-1/biosynthesis , Antigens, Ly/metabolism , Aorta, Thoracic/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , Monocytes/metabolism , Plaque, Atherosclerotic , Adenoviridae/genetics , Angiopoietin-1/genetics , Animals , Aorta, Thoracic/pathology , Aortic Diseases/genetics , Aortic Diseases/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , CD11b Antigen/blood , Chemokine CCL2/blood , Diet, High-Fat , Disease Models, Animal , Genetic Predisposition to Disease , Genetic Vectors , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Monocytes/pathology , Phenotype , Signal Transduction , Tissue Culture Techniques , Vascular Endothelial Growth Factor A/blood
SELECTION OF CITATIONS
SEARCH DETAIL