Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Br J Anaesth ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38862382

ABSTRACT

BACKGROUND: Chronic post-surgical pain (CPSP) significantly impacts patients' recovery and quality of life. Although environmental risk factors are well-established, genetic risk remains less understood. METHODS: A meta-analysis of genome-wide association studies followed by partitioned heritability was performed on 1350 individuals across five surgery types: hysterectomy, mastectomy, abdominal, hernia, and knee. In subsequent animal studies, withdrawal thresholds to evoked mechanical stimulation were measured in Rag1 null mutant and wild-type mice after plantar incision and laparotomy. Cell sorting by flow cytometry tracked recruitment of immune cell types. RESULTS: We discovered 77 genome-wide significant single-nucleotide polymorphism (SNP) hits, distributed among 24 loci and 244 genes. Meta-analysis of all cohorts estimated a SNP-based narrow-sense heritability for CPSP at ∼39%, indicating a substantial genetic contribution. Partitioned heritability analysis across a wide variety of tissues revealed enrichment of heritability in immune system-related genes, particularly those associated with B and T cells. Rag1 null mutant mice lacking both T and B cells exhibited exacerbated and prolonged allodynia up to 42 days after surgery, which was rescued by B-cell transfer. Recruitment patterns of B cells but not T cells differed significantly during the first 7 days after injury in the footpad, lymph nodes, and dorsal root ganglia. CONCLUSIONS: These findings suggest a key protective role for the adaptive immune system in the development of chronic post-surgical pain.

2.
FASEB J ; 38(8): e23603, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648368

ABSTRACT

Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupts the intestinal epithelial layer and causes intestinal dysbiosis. Depleting gut bacteria can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. The mechanism underlying opioid-induced dysbiosis, however, remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine or fentanyl exposure reduces the antimicrobial activity in the ileum, resulting in changes in the composition of bacteria. Fecal samples from morphine-treated mice had increased levels of Akkermansia muciniphila with a shift in the abundance ratio of Firmicutes and Bacteroidetes. Fecal microbial transplant (FMT) from morphine-naïve mice or oral supplementation with butyrate restored (a) the antimicrobial activity, (b) the expression of the antimicrobial peptide, Reg3γ, (c) prevented the increase in intestinal permeability and (d) prevented the development of antinociceptive tolerance in morphine-dependent mice. Improved epithelial barrier function with FMT or butyrate prevented the enrichment of the mucin-degrading A. muciniphila in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which opioids disrupt the microbiota-gut-brain axis.


Subject(s)
Analgesics, Opioid , Dysbiosis , Fentanyl , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Inbred C57BL , Morphine , Animals , Morphine/pharmacology , Mice , Dysbiosis/chemically induced , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Male , Fentanyl/pharmacology , Analgesics, Opioid/pharmacology , Brain-Gut Axis/drug effects , Fecal Microbiota Transplantation , Pancreatitis-Associated Proteins/metabolism , Akkermansia/drug effects , Antimicrobial Peptides/pharmacology , Bacteroidetes/drug effects
3.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37972067

ABSTRACT

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Subject(s)
Chronic Pain , Peptidomimetics , Rats , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Rats, Sprague-Dawley , Peptidomimetics/pharmacology , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Sensory Receptor Cells/metabolism , Ganglia, Spinal/metabolism
4.
Res Sq ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37503065

ABSTRACT

Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupt the intestinal epithelial layer and cause intestinal dysbiosis. Inhibiting opioid-induced dysbiosis can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. However, the mechanism underlying opioid-induced dysbiosis remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine exposure reduces expression of the antimicrobial peptide, Regenerating islet-derived 3 gamma (Reg3γ), in the ileum resulting in reduced intestinal antimicrobial activity against Gram-positive bacteria, L. reuteri. Fecal samples from morphine-treated mice had reduced levels of the phylum, Firmicutes, concomitant with reduced levels of short-chain fatty acid, butyrate. Fecal microbial transplant (FMT) from morphine-naïve mice restored the antimicrobial activity, the expression of Reg3γ, and prevented the increase in intestinal permeability and the development of antinociceptive tolerance in morphine-dependent mice. Similarly, oral gavage with sodium butyrate dose-dependently reduced the development of antinociceptive tolerance, and prevented the downregulation of Reg3γ and the reduction in antimicrobial activity. The alpha diversity of the microbiome was also restored by oral butyrate in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which morphine disrupts the microbiota-gut-brain axis.

5.
Brain Res ; 1817: 148483, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37442250

ABSTRACT

Nicotine and tobacco-related deaths remains a leading cause of preventable death and disease in the United States. Several studies indicate that modulation of the endocannabinoid system, primarily of the endocannabinoid 2-Arachidonoylglycerol (2-AG), alters nicotinic dependence behaviors in rodents. This study, using transgenic knock-out (KO) mice, evaluated the role of the two 2-AG biosynthesis enzymes, (Diacylglycerol lipase-α) DAGL-α and DAGL-ß in spontaneous nicotine withdrawal. DAGL-α deletion prevents somatic and affective signs of nicotine withdrawal, while DAGL-ß deletion plays a role in hyperalgesia due to nicotine withdrawal. These results suggest a differential role of these enzymes in the various signs of nicotine withdrawal. Our behavioral findings relate to the distribution of these enzymes with DAGL-ß being highly expressed in macrophages and DAGL-α in neurons. This study offers new potential targets for smoking cessation therapies.


Subject(s)
Substance Withdrawal Syndrome , Tobacco Use Disorder , Mice , Animals , Nicotine , Lipoprotein Lipase , Endocannabinoids , Mice, Knockout
6.
medRxiv ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36945481

ABSTRACT

Chronic post-surgical pain affects a large proportion of people undergoing surgery, delaying recovery time and worsening quality of life. Although many environmental variables have been established as risk factors, less is known about genetic risk. To uncover genetic risk factors we performed genome-wide association studies in post-surgical cohorts of five surgery types- hysterectomy, mastectomy, abdominal, hernia, and knee- totaling 1350 individuals. Genetic associations between post-surgical chronic pain levels on a numeric rating scale (NRS) and additive genetic effects at common SNPs were evaluated. We observed genome-wide significant hits in almost all cohorts that displayed significance at the SNP, gene, and pathway levels. The cohorts were then combined via a GWAS meta-analysis framework for further analyses. Using partitioned heritability, we found that loci at genes specifically expressed in the immune system carried enriched heritability, especially genes related to B and T cells. The relevance of B cells in particular was then demonstrated in mouse postoperative pain assays. Taken altogether, our results suggest a role for the adaptive immune system in chronic post-surgical pain.

7.
Pharmacol Res ; 191: 106746, 2023 05.
Article in English | MEDLINE | ID: mdl-37001709

ABSTRACT

Cannabis is among the most widely consumed psychoactive drugs around the world and cannabis use disorder (CUD) has no current approved pharmacological treatment. Nicotine and cannabis are commonly co-used which suggests there to be overlapping neurobiological actions supported primarily by the co-distribution of both receptor systems in the brain. There appears to be strong rationale to explore the role that nicotinic receptors play in cannabinoid dependence. Preclinical studies suggest that the ɑ7 nAChR subtype may play a role in modulating the reinforcing and discriminative stimulus effects of cannabinoids, while the ɑ4ß2 * nAChR subtype may be involved in modulating the motor and sedative effects of cannabinoids. Preclinical and human genetic studies point towards a potential role of the ɑ5, ɑ3, and ß4 nAChR subunits in CUD, while human GWAS studies strongly implicate the ɑ2 subunit as playing a role in CUD susceptibility. Clinical studies suggest that current smoking cessation agents, such as varenicline and bupropion, may also be beneficial in treating CUD, although more controlled studies are necessary. Additional behavioral, molecular, and mechanistic studies investigating the role of nAChR in the modulation of the pharmacological effects of cannabinoids are needed.


Subject(s)
Cannabinoids , Receptors, Nicotinic , Humans , Nicotinic Agonists , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Nicotine/pharmacology , Varenicline , Cannabinoid Receptor Agonists
8.
Neurobiol Pain ; 12: 100103, 2022.
Article in English | MEDLINE | ID: mdl-36531613

ABSTRACT

Background: Management of pain post-surgery is crucial for tissue healing in both veterinary and human medicine. Overuse of some analgesics such as opioids may lead to addictions and worsen pain syndromes (opioid-induced hyperalgesia), while underuse of it may affect the welfare of the patient. Therefore, the importance of using surgery models in laboratory animals is increasing, with the goal of improving our understanding of pain neurobiology and developing safer analgesics. Methods: We compared the widely used plantar incision model with the laparotomy surgery model and measured pain-related behaviors using both spontaneous and evoked responses in female and male C57BL/6J mice. Additionally, we assessed conditioned place preference (CPP) and sucrose preference tests to measure pain-induced motivation for the analgesic ketoprofen and anhedonia-like behavior. Results: Laparotomized mice showed increased abdominal sensitivity while paw-incised mice showed increased paw thermal and mechanical sensitivity up to seven days post-surgery. Laparotomy surgery reduced all spontaneous behaviors in our study however this effect dissipated by 24 h post-laparotomy. On the other hand, paw incision only reduced the percentage of cage hanging in a sex-dependent manner at 6 h post-incision. We also showed that both surgery models increased conditioned place preference for ketoprofen while preference for sucrose was only reduced at 24 h post-laparotomy. Laporatomy, but not paw incision, induced a decrease in body weight at 24 h post-surgery. Neither surgery model affected fluid intake. Conclusion: Our results indicate that post-surgery hypersensitivity and behavioral deficits may differ by the incision site. Furthermore, factors associated with the surgery including length of the incision, duration of the anesthesia, and the layers that received stitches may affect subsequent spontaneous behaviors. These findings may help to improve drug development or the choice of the effective analgesic, depending on the surgery type.

9.
J Genet ; 1012022.
Article in English | MEDLINE | ID: mdl-36330789

ABSTRACT

Spirulina platensis has gradually gained more attention for its therapeutic, antioxidant, and anti-inflammatory potential worldwide. However, the current molecular knowledge about the effects of spirulina on stress-related genes is rather limited. The effects of dietary intake of spirulina on the HSP70 gene expression were assessed in a controlled in vivo experimental design. Moreover, alterations in serum corticosterone levels, IL-2, IL-4, IFN-Υ, triglyceride, ALT, AST, relative gene expression values, and the correlations between them were evaluated. A total of 36 rats were divided into four groups: control group, stress-only group, spirulina group, and spirulina+stress group. To control the dose administration, S. platensis was applied by a gastric gavage in stress groups. Crowded environment stress and hosting alone stress were applied to the stress-only group and spirulina + stress group. RNA was extracted from brain samples using TRIpure and the relative gene expression assessment was performed using Roche-LightCycler-480-II real-time PCR-System. Gene expression values were remarkably different among the four experimental groups. The differences between stress-only and the spirulina groups were statistically significant (P<0.05). The correlation between the HSP70 gene expression and the IFN-Υ was found to be statistically significant (P<0.05; r=0.50). Results indicate a novel effect of spirulina on the HSP70 expression related to the stress-response. Data presented in this study may be useful for further studies to define not only the molecular genetic aspects through dietary S. platensis but also the effects of spirulina on stress-response and animal welfare.


Subject(s)
Spirulina , Animals , Rats , Transcriptome , Dietary Supplements , HSP70 Heat-Shock Proteins/genetics , Brain , Eating , Models, Theoretical
10.
J Neuroimmune Pharmacol ; 17(1-2): 111-130, 2022 06.
Article in English | MEDLINE | ID: mdl-35106734

ABSTRACT

The gastrointestinal epithelium is critical for maintaining a symbiotic relationship with commensal microbiota. Chronic morphine exposure can compromise the gut epithelial barrier in mice and lead to dysbiosis. Recently, studies have implicated morphine-induced dysbiosis in the mechanism of antinociceptive tolerance and reward, suggesting the presence of a gut-brain axis in the pharmacological effects of morphine. However, the mechanism(s) underlying morphine-induced changes in the gut microbiome remains unclear. The pro-inflammatory cytokine, Interleukin-18 (IL-18), released by enteric neurons can modulate gut barrier function. Therefore, in the present study we investigated the effect of morphine on IL-18 expression in the mouse ileum. We observed that chronic morphine exposure in vivo induces IL-18 expression in the ileum myenteric plexus that is attenuated by naloxone. Given that mu-opioid receptors (MORs) are mainly expressed in enteric neurons, we also characterized morphine effects on the excitability of cholinergic (excitatory) and vasoactive intestinal peptide (VIP)-expressing (inhibitory) myenteric neurons. We found fundamental differences in the electrical properties of cholinergic and VIP neurons such that VIP neurons are more excitable than cholinergic neurons. Furthermore, MORs were primarily expressed in cholinergic neurons, although a subset of VIP neurons also expressed MORs and responded to morphine in electrophysiology experiments. In conclusion, these data show that morphine increases IL-18 in ileum myenteric plexus neurons via activation of MORs in a subset of cholinergic and VIP neurons. Thus, understanding the neurochemistry and electrophysiology of MOR-expressing enteric neurons can help to delineate mechanisms by which morphine perturbs the gut barrier.


Subject(s)
Morphine , Myenteric Plexus , Mice , Animals , Morphine/pharmacology , Interleukin-18 , Cholinergic Agents , Receptors, Opioid
11.
J Vet Res ; 65(2): 193-200, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34250304

ABSTRACT

INTRODUCTION: There is a balance between oxidative stress, antioxidant capacity and immune response. Their roles in physiological and behavioural mechanisms are important for the maintenance of the organism's internal equilibrium. This study aimed to evaluate the antioxidant effects of the exogenous alga Spirulina platensis (Arthrospira platensis) in a stress-induced rat model, and to describe its possible mechanism of action. MATERIAL AND METHODS: Thirty-six adult male Sprague Dawley rats were separated into four groups: control (C), stress (S), S. platensis (Sp), and S. platensis + stress (SpS). The rats in groups Sp and SpS were fed with 1,500 mg/kg b.w./day Spirulina platensis for 28 days. All rats were exposed to prolonged light phase conditions (18 h light : 6 h dark) for 14 days. The SpS and S groups were exposed to stress by being kept isolated and in a crowded environment. Blood samples were obtained by puncturing the heart on the 28th day. The effect of stress on serum corticosterone, oxidative stress markers (TOS, TAC, PON1, OSI) and immunological parameters (IL-2, IL-4, IFN-É£) were tested. Also, the brain, heart, intestines (duodenum, ileum, and colon), kidney, liver, spleen, and stomach of the rats were weighed. RESULTS: Serum corticosterone levels were higher in the S group than in the C group, and significantly lower in the SpS group than in the S group. Mean total antioxidant capacity were lower in the S group than in the C group, and Spirulina reversed this change. Although not significantly different, IL-2 was lower in the S group than in the C group. However, in the SpS group, IL-2 increased due to Spirulina platensis mitigating effects of stress. CONCLUSION: Male rats fed a diet with Spirulina platensis could experience significantly milder physiological changes during stress, although stress patterns may be different. Exogenous antioxidant supplements merit further investigation in animals and humans where the endogenous defence mechanism against stress may not be sufficient.

12.
Front Pain Res (Lausanne) ; 2: 738499, 2021.
Article in English | MEDLINE | ID: mdl-35295474

ABSTRACT

Opioids and non-steroidal anti-inflammatory drugs (NSAIDs) are excellent analgesics, but recent clinical evidence suggests that these drugs might worsen disease severity in Crohn's disease patients, limiting their clinical utility for treating Inflammatory Bowel Disease (IBD). One indicator of change in well-being from conditions such as IBD is behavioral depression and disruption to activities of daily living. Preclinical measures of behavioral depression can provide an indicator of changes in quality of life and subsequent modification by candidate analgesics. In mice, nesting is an adaptive unconditioned behavior that is susceptible to disruption by noxious stimuli, and some types of pain related nesting depression are responsive to opioid and NSAID analgesics. Here we show that a 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) model of experimental colitis depresses nesting behavior in mice, and we evaluated effects of morphine, an opioid, and ketoprofen, a NSAID, on TNBS-induced nesting depression. In Swiss Webster mice, TNBS significantly reduced nesting that peaked on Day 3 and recovered in a time-dependent manner with complete recovery by Day 7. In the absence of colonic inflammation, daily treatment with morphine (1-10 mg/kg) did not decrease nesting except at 10mg/kg/day. However, in TNBS-treated mice 3.2 mg/kg/day morphine significantly exacerbated TNBS-induced nesting depression and delayed recovery. While 3.2 mg/kg/day morphine alone did not alter locomotor activity and TNBS-induced depression of locomotion recovered, the combination of TNBS and 3.2 mg/kg/day morphine significantly attenuated locomotion and prevented recovery. Daily treatment with 3.2 or 10 mg/kg ketoprofen in TNBS-treated mice did not prevent depression of nesting. These data suggest that opioid analgesics but not NSAIDS worsen colonic inflammation-induced behavioral depression. Furthermore, these findings highlight the importance of evaluating analgesic effects in models of colonic inflammation induced depression of behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...