Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768299

ABSTRACT

For the past several years, fundamental research on Sigma-1R (S1R) protein has unveiled its necessity for maintaining proper cellular homeostasis through modulation of calcium and lipid exchange between the endoplasmic reticulum (ER) and mitochondria, ER-stress response, and many other mechanisms. Most of these processes, such as ER-stress response and autophagy, have been associated with neuroprotective roles. In fact, improving these mechanisms using S1R agonists was beneficial in several brain disorders including neurodegenerative diseases. In this review, we will examine S1R subcellular localization and describe S1R-associated biological activity within these specific compartments, i.e., the Mitochondrion-Associated ER Membrane (MAM), ER-Lipid Droplet (ER-LD) interface, ER-Plasma Membreane (ER-PM) interface, and the Nuclear Envelope (NE). We also discussed how the dysregulation of these pathways contributes to neurodegenerative diseases, while highlighting the cellular mechanisms and key binding partners engaged in these processes.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Neurodegenerative Diseases , Neuroprotection , Receptors, sigma , Humans , Autophagy/genetics , Autophagy/physiology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/physiology , Mitochondria/genetics , Mitochondria/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neuroprotection/genetics , Neuroprotection/physiology , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Receptors, sigma/genetics , Receptors, sigma/metabolism , Sigma-1 Receptor
2.
Cell Host Microbe ; 30(11): 1615-1629.e5, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36323315

ABSTRACT

Gut-microbiota membership is associated with diverse neuropsychological outcomes, including substance use disorders (SUDs). Here, we use mice colonized with Citrobacter rodentium or the human γ-Proteobacteria commensal Escherichia coli HS as a model to examine the mechanistic interactions between gut microbes and host responses to cocaine. We find that cocaine exposure increases intestinal norepinephrine levels that are sensed through the bacterial adrenergic receptor QseC to promote intestinal colonization of γ-Proteobacteria. Colonized mice show enhanced host cocaine-induced behaviors. The neuroactive metabolite glycine, a bacterial nitrogen source, is depleted in the gut and cerebrospinal fluid of colonized mice. Systemic glycine repletion reversed, and γ-Proteobacteria mutated for glycine uptake did not alter the host response to cocaine. γ-Proteobacteria modulated glycine levels are linked to cocaine-induced transcriptional plasticity in the nucleus accumbens through glutamatergic transmission. The mechanism outline here could potentially be exploited to modulate reward-related brain circuits that contribute to SUDs.


Subject(s)
Cocaine , Gastrointestinal Microbiome , Mice , Humans , Animals , Proteobacteria , Citrobacter rodentium , Bacteria , Escherichia coli , Glycine
3.
Proc Natl Acad Sci U S A ; 119(31): e2204901119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881790

ABSTRACT

Although a wide variety of genetic tools has been developed to study learning and memory, the molecular basis of memory encoding remains incompletely understood. Here, we undertook an unbiased approach to identify novel genes critical for memory encoding. From a large-scale, in vivo mutagenesis screen using contextual fear conditioning, we isolated in mice a mutant, named Clueless, with spatial learning deficits. A causative missense mutation (G434V) was found in the voltage-gated potassium channel, subfamily C member 3 (Kcnc3) gene in a region that encodes a transmembrane voltage sensor. Generation of a Kcnc3G434V CRISPR mutant mouse confirmed this mutation as the cause of the learning defects. While G434V had no effect on transcription, translation, or trafficking of the channel, electrophysiological analysis of the G434V mutant channel revealed a complete loss of voltage-gated conductance, a broadening of the action potential, and decreased neuronal firing. Together, our findings have revealed a role for Kcnc3 in learning and memory.


Subject(s)
Hippocampus , Learning Disabilities , Memory , Mutation, Missense , Shaw Potassium Channels , Action Potentials/physiology , Animals , Hippocampus/physiopathology , Learning Disabilities/genetics , Mice , Mice, Inbred C57BL , Shaw Potassium Channels/genetics , Shaw Potassium Channels/physiology
4.
Cells ; 10(11)2021 11 06.
Article in English | MEDLINE | ID: mdl-34831286

ABSTRACT

Developmental and epileptic encephalopathies (DEE) are rare and serious neurological disorders characterized by severe epilepsy with refractory seizures and a significant developmental delay. Recently, DEE73 was linked to genetic alterations of the RNF13 gene, which convert positions 311 or 312 in the RNF13 protein from leucine to serine or proline, respectively (L311S and L312P). Using a fluorescence microscopy approach to investigate the molecular and cellular mechanisms affected by RNF13 protein variants, the current study shows that wild-type RNF13 localizes extensively with endosomes and lysosomes, while L311S and L312P do not extensively colocalize with the lysosomal marker Lamp1. Our results show that RNF13 L311S and L312P proteins affect the size of endosomal vesicles along with the temporal and spatial progression of fluorescently labeled epidermal growth factor, but not transferrin, in the endolysosomal system. Furthermore, GST-pulldown and co-immunoprecipitation show that RNF13 variants disrupt association with AP-3 complex. Knockdown of AP-3 complex subunit AP3D1 alters the lysosomal localization of wild-type RNF13 and similarly affects the size of endosomal vesicles. Importantly, our study provides a first step toward understanding the cellular and molecular mechanism altered by DEE73-associated genetic variations of RNF13.


Subject(s)
Adaptor Protein Complex 3/metabolism , Endosomes/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Amino Acid Motifs , Epidermal Growth Factor/metabolism , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Lysosomes/metabolism , Protein Binding , Transferrin/metabolism , Ubiquitin-Protein Ligases/genetics
5.
Front Neurosci ; 14: 698, 2020.
Article in English | MEDLINE | ID: mdl-32760242

ABSTRACT

The consequence of repeated cocaine exposure and prolonged abstinence on glutamate receptor expression in the nucleus accumbens has been extensively studied. However, the early effects of cocaine on NMDAR signaling remain unknown. NMDAR signaling depends on the subunit composition, subcellular localization, and the interaction with proteins at the postsynaptic density (PSD), where NMDARs and other proteins form supercomplexes that are responsible for the signaling pathways activated by NMDAR-induced Ca2+ influx. Here, we investigated the effect of cocaine on NMDAR subunit composition and subcellular localization after both intraperitoneal non-contingent cocaine and response-contingent intravenous cocaine self-administration in mice. We found that repeated cocaine exposure, regardless of the route or contingency of drug administration, decreases NMDAR interactions with the PSD and synaptic lipid rafts in the accumbens shell and dorsal striatum. We provide evidence that cocaine triggers an early redistribution of NMDARs from synaptic to extrasynaptic sites, and that this adaptation has implications in the activation of downstream signaling pathways. Thus, consistent with a loss of NMDAR function, cocaine-induced ERK phosphorylation is attenuated. Because early NMDAR activity contributes to the initiation of lasting addiction-relevant neuroadaptations, these data may hold clues into cellular mechanisms responsible for the development of cocaine addiction.

6.
Mol Psychiatry ; 25(3): 680-691, 2020 03.
Article in English | MEDLINE | ID: mdl-29880884

ABSTRACT

Drug-induced enhanced dopamine (DA) signaling in the brain is a canonical mechanism that initiates addiction processes. However, indirect evidence suggests that cocaine also triggers non-canonical, DA-independent, mechanisms that contribute to behavioral responses to cocaine, including psychomotor sensitization and cocaine self-administration. Identifying these mechanisms and determining how they are initiated is fundamental to further our understanding of addiction processes. Using physiologically relevant in vitro tractable models, we found that cocaine-induced hypoactivity of nucleus accumbens shell (NAcSh) medium spiny neurons (MSNs), one hallmark of cocaine addiction, is independent of DA signaling. Combining brain slice studies and site-directed mutagenesis in HEK293T cells, we found that cocaine binding to intracellular sigma-1 receptor (σ1) initiates this mechanism. Subsequently, σ1 binds to Kv1.2 potassium channels, followed by accumulation of Kv1.2 in the plasma membrane, thereby depressing NAcSh MSNs firing. This mechanism is specific to D1 receptor-expressing MSNs. Our study uncovers a mechanism for cocaine that bypasses DA signaling and leads to addiction-relevant neuroadaptations, thereby providing combinatorial strategies for treating stimulant abuse.


Subject(s)
Cocaine/pharmacology , Nucleus Accumbens/drug effects , Substance-Related Disorders/physiopathology , Animals , Cocaine/metabolism , Cocaine-Related Disorders/metabolism , Dopamine/metabolism , Drug-Seeking Behavior/drug effects , Excitatory Postsynaptic Potentials/drug effects , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Nucleus Accumbens/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Self Administration
7.
Mol Psychiatry ; 25(11): 2832-2843, 2020 11.
Article in English | MEDLINE | ID: mdl-30038231

ABSTRACT

Recent findings from in vivo-imaging and human post-mortem tissue studies in schizophrenic psychosis (SzP), have demonstrated functional and molecular changes in hippocampal subfields that can be associated with hippocampal hyperexcitability. In this study, we used a subfield-specific GluN1 knockout mouse with a disease-like molecular perturbation expressed only in hippocampal dentate gyrus (DG) and assessed its association with hippocampal physiology and psychosis-like behaviors. First, we used whole-cell patch-clamp recordings to measure the physiological changes in hippocampal subfields and cFos immunohistochemistry to examine cellular excitability. DG-GluN1 KO mice show CA3 cellular hyperactivity, detected using two approaches: (1) increased excitatory glutamate transmission at mossy fibers (MF)-CA3 synapses, and (2) an increased number of cFos-activated pyramidal neurons in CA3, an outcome that appears to project downstream to CA1 and basolateral amygdala (BLA). Furthermore, we examined psychosis-like behaviors and pathological memory processing; these show an increase in fear conditioning (FC), a reduction in prepulse inhibition (PPI) in the KO animal, along with a deterioration in memory accuracy with Morris Water Maze (MWM) and reduced social memory (SM). Moreover, with DREADD vectors, we demonstrate a remarkably similar behavioral profile when we induce CA3 hyperactivity. These hippocampal subfield changes could provide the basis for the observed increase in human hippocampal activity in SzP, based on the shared DG-specific GluN1 reduction. With further characterization, these animal model systems may serve as targets to test psychosis mechanisms related to hippocampus and assess potential hippocampus-directed treatments.


Subject(s)
CA3 Region, Hippocampal/physiopathology , Dentate Gyrus/metabolism , Nerve Tissue Proteins/deficiency , Psychotic Disorders/physiopathology , Receptors, N-Methyl-D-Aspartate/deficiency , Animals , CA3 Region, Hippocampal/cytology , Female , Male , Mice , Mice, Inbred C57BL , Pyramidal Cells
8.
Front Neurosci ; 13: 1186, 2019.
Article in English | MEDLINE | ID: mdl-31780884

ABSTRACT

The sigma-1 receptor (σ1R) is an endoplasmic reticulum (ER)-resident chaperone protein that acts like an inter-organelle signaling modulator. Among its several functions such as ER lipid metabolisms/transports and indirect regulation of genes transcription, one of its most intriguing feature is the ability to regulate the function and trafficking of a variety of functional proteins. To date, and directly relevant to the present review, σ1R has been found to regulate both voltage-gated ion channels (VGICs) belonging to distinct superfamilies (i.e., sodium, Na+; potassium, K+; and calcium, Ca2+ channels) and non-voltage-gated ion channels. This regulatory function endows σ1R with a powerful capability to fine tune cells' electrical activity and calcium homeostasis-a regulatory power that appears to favor cell survival in pathological contexts such as stroke or neurodegenerative diseases. In this review, we present the current state of knowledge on σ1R's role in the regulation of cellular electrical activity, and how this seemingly adaptive function can shift cell homeostasis and contribute to the development of very distinct chronic pathologies such as psychostimulant abuse and tumor cell growth in cancers.

9.
Nat Med ; 24(9): 1482, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29934536

ABSTRACT

In the version of this article originally published, a URL provided in the Methods section was incorrect. The URL had a solidus at the end but should have appeared as http://www.nature.com/authors/policies/image.html. The error has been corrected in the PDF and HTML versions of this article.

10.
Nat Med ; 24(5): 658-666, 2018 05.
Article in English | MEDLINE | ID: mdl-29662202

ABSTRACT

Major depressive disorder (MDD) is considered a 'circuitopathy', and brain stimulation therapies hold promise for ameliorating MDD symptoms, including hippocampal dysfunction. It is unknown whether stimulation of upstream hippocampal circuitry, such as the entorhinal cortex (Ent), is antidepressive, although Ent stimulation improves learning and memory in mice and humans. Here we show that molecular targeting (Ent-specific knockdown of a psychosocial stress-induced protein) and chemogenetic stimulation of Ent neurons induce antidepressive-like effects in mice. Mechanistically, we show that Ent-stimulation-induced antidepressive-like behavior relies on the generation of new hippocampal neurons. Thus, controlled stimulation of Ent hippocampal afferents is antidepressive via increased hippocampal neurogenesis. These findings emphasize the power and potential of Ent glutamatergic afferent stimulation-previously well-known for its ability to influence learning and memory-for MDD treatment.


Subject(s)
Antidepressive Agents/therapeutic use , Dentate Gyrus/pathology , Entorhinal Cortex/pathology , Animals , Behavior, Animal , Chronic Disease , Dendrites/pathology , Glutamates/metabolism , HEK293 Cells , Humans , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/metabolism , Nerve Net/pathology , Neurogenesis , Peroxins/deficiency , Peroxins/metabolism , Stress, Psychological/complications
11.
Handb Exp Pharmacol ; 244: 109-130, 2017.
Article in English | MEDLINE | ID: mdl-28275909

ABSTRACT

The sigma-1 receptor (Sig-1R), via interaction with various proteins, including voltage-gated and ligand-gated ion channels (VGICs and LGICs), is involved in a plethora of neuronal functions. This capability to regulate a variety of ion channel targets endows the Sig-1R with a powerful capability to fine tune neuronal excitability, and thereby the transmission of information within brain circuits. This versatility may also explain why the Sig-1R is associated to numerous diseases at both peripheral and central levels. To date, how the Sig-1R chooses its targets and how the combinations of target modulations alter overall neuronal excitability is one of the challenges in the field of Sig-1R-dependent regulation of neuronal activity. Here, we will describe and discuss the latest findings on Sig-1R-dependent modulation of VGICs and LGICs, and provide hypotheses that may explain the diverse excitability outcomes that have been reported so far.


Subject(s)
Electrical Synapses/metabolism , Neurons/metabolism , Receptors, sigma/metabolism , Synaptic Transmission , Action Potentials , Animals , Calcium Channels/metabolism , Humans , Ion Channel Gating , Ligand-Gated Ion Channels/metabolism , Potassium Channels, Voltage-Gated/metabolism , Voltage-Gated Sodium Channels/metabolism , Sigma-1 Receptor
12.
J Vis Exp ; (112)2016 06 15.
Article in English | MEDLINE | ID: mdl-27341060

ABSTRACT

Whole-cell patch-clamp recording is an electrophysiological technique that allows the study of the electrical properties of a substantial part of the neuron. In this configuration, the micropipette is in tight contact with the cell membrane, which prevents current leakage and thereby provides more accurate ionic current measurements than the previously used intracellular sharp electrode recording method. Classically, whole-cell recording can be performed on neurons in various types of preparations, including cell culture models, dissociated neurons, neurons in brain slices, and in intact anesthetized or awake animals. In summary, this technique has immensely contributed to the understanding of passive and active biophysical properties of excitable cells. A major advantage of this technique is that it provides information on how specific manipulations (e.g., pharmacological, experimenter-induced plasticity) may alter specific neuronal functions or channels in real-time. Additionally, significant opening of the plasma membrane allows the internal pipette solution to freely diffuse into the cytoplasm, providing means for introducing drugs, e.g., agonists or antagonists of specific intracellular proteins, and manipulating these targets without altering their functions in neighboring cells. This article will focus on whole-cell recording performed on neurons in brain slices, a preparation that has the advantage of recording neurons in relatively well preserved brain circuits, i.e., in a physiologically relevant context. In particular, when combined with appropriate pharmacology, this technique is a powerful tool allowing identification of specific neuroadaptations that occurred following any type of experiences, such as learning, exposure to drugs of abuse, and stress. In summary, whole-cell patch-clamp recordings in brain slices provide means to measure in ex vivo preparation long-lasting changes in neuronal functions that have developed in intact awake animals.


Subject(s)
Brain/physiology , Patch-Clamp Techniques/methods , Animals , Mice , Neural Pathways/physiology , Neurons/physiology , Wakefulness/physiology
14.
Neuropsychopharmacology ; 41(2): 464-76, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26068728

ABSTRACT

Repeated exposure to psychostimulant drugs such as cocaine or amphetamine can promote drug-seeking and -taking behavior. In rodent addiction models, persistent changes in excitatory glutamatergic neurotransmission in the nucleus accumbens (NAc) appear to drive this drug-induced behavioral plasticity. To study whether changes in glutamatergic signaling are shared between or exclusive to specific psychostimulant drugs, we examined synaptic transmission from mice following repeated amphetamine or cocaine administration. Synaptic transmission mediated by AMPA-type glutamate receptors was potentiated in the NAc shell 10-14 days following repeated amphetamine or cocaine treatment. This synaptic enhancement was depotentiated by re-exposure to amphetamine or cocaine. By contrast, in the NAc core only repeated cocaine exposure enhanced synaptic transmission, which was subsequently depotentiated by an additional cocaine but not amphetamine injection during drug abstinence. To better understand the drug-induced depotentiation, we replicated these in vivo findings using an ex vivo model termed 'challenge in the bath,' and showed that drug-induced decreases in synaptic strength occur rapidly (within 30 min) and require activation of metabotropic glutamate receptor 5 (mGluR5) and protein synthesis in the NAc shell, but not NAc core. Overall, these data demonstrate the specificity of neuronal circuit changes induced by amphetamine, introduce a novel method for studying drug challenge-induced plasticity, and define NAc shell medium spiny neurons as a primary site of persistent AMPA-type glutamate receptor plasticity by two widely used psychostimulant drugs.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Agents/pharmacology , Cocaine/pharmacology , Neuronal Plasticity/drug effects , Nucleus Accumbens/drug effects , Receptors, AMPA/metabolism , Animals , Male , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/metabolism , Psychotropic Drugs/pharmacology , Tissue Culture Techniques
15.
J Neurosci ; 35(8): 3537-43, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25716852

ABSTRACT

Previous studies suggest that pharmacological or molecular activation of the nucleus accumbens shell (AcbSh) facilitates extinction of cocaine-seeking behavior. However, overexpression of CREB, which increases excitability of AcbSh neurons, enhances cocaine-seeking behavior while producing depression-like behavior in tests of mood. These discrepancies may reflect activity in differential AcbSh outputs, including those to the lateral hypothalamus (LH), a target region known to influence addictive behavior and mood. Presently, it is unknown whether there is a causal link between altered activity in the AcbSh-LH pathway and changes in the motivation for cocaine. In this study, we used an optogenetics approach to either globally stimulate AcbSh neurons or to selectively stimulate AcbSh terminal projections in the LH, in rats self-administering cocaine. We found that stimulation of the AcbSh-LH pathway enhanced the motivation to self-administer cocaine in progressive ratio testing, and led to long-lasting facilitation of cocaine-seeking behavior during extinction tests conducted after withdrawal from cocaine self-administration. In contrast, global AcbSh stimulation reduced extinction responding. We compared these opposing motivational effects with effects on mood using the forced swim test, where both global AcbSh neuron and selective AcbSh-LH terminal stimulation facilitated depression-like behavioral despair. Together, these findings suggest that the AcbSh neurons convey complex, pathway-specific modulation of addiction and depression-like behavior, and that these motivation and mood phenomenon are dissociable.


Subject(s)
Cocaine-Related Disorders/physiopathology , Drug-Seeking Behavior , Hypothalamic Area, Lateral/physiopathology , Motivation , Nucleus Accumbens/physiopathology , Affect , Animals , Cocaine/pharmacology , Extinction, Psychological , Hypothalamic Area, Lateral/cytology , Male , Neural Pathways/cytology , Neural Pathways/physiopathology , Neurons/physiology , Nucleus Accumbens/cytology , Optogenetics , Rats , Rats, Sprague-Dawley
16.
Nat Rev Neurosci ; 16(3): 173-84, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25697160

ABSTRACT

Exposure to drugs of abuse, such as cocaine, leads to plastic changes in the activity of brain circuits, and a prevailing view is that these changes play a part in drug addiction. Notably, there has been intense focus on drug-induced changes in synaptic excitability and much less attention on intrinsic excitability factors (that is, excitability factors that are remote from the synapse). Accumulating evidence now suggests that intrinsic factors such as K+ channels are not only altered by cocaine but may also contribute to the shaping of the addiction phenotype.


Subject(s)
Behavior, Addictive/diagnosis , Brain/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Animals , Behavior, Addictive/genetics , Behavior, Addictive/psychology , Humans
17.
Science ; 342(6165): 1508-12, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24357318

ABSTRACT

The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However, the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has a lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a nonsynonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMRP interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2, and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine-response phenotypes. We propose that CYFIP2 is a key regulator of cocaine response in mammals and present a framework to use mouse substrains to identify previously unknown genes and alleles regulating behavior.


Subject(s)
Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/psychology , Cocaine/administration & dosage , Drug-Seeking Behavior , Nerve Tissue Proteins/physiology , Adaptor Proteins, Signal Transducing , Amino Acid Substitution , Animals , Central Nervous System Stimulants/administration & dosage , Methamphetamine/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Mutation , Nerve Tissue Proteins/genetics , Phenylalanine/genetics , Polymorphism, Single Nucleotide , Psychomotor Performance/drug effects , Quantitative Trait Loci , Serine/genetics
18.
J Neurosci ; 33(10): 4295-307, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23467346

ABSTRACT

The transcription factor ΔFosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKIIα) are induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse, in which the two proteins mediate sensitized drug responses. Although ΔFosB and CaMKIIα both regulate AMPA glutamate receptor expression and function in NAc, dendritic spine formation on NAc medium spiny neurons (MSNs), and locomotor sensitization to cocaine, no direct link between these molecules has to date been explored. Here, we demonstrate that ΔFosB is phosphorylated by CaMKIIα at the protein-stabilizing Ser27 and that CaMKII is required for the cocaine-mediated accumulation of ΔFosB in rat NAc. Conversely, we show that ΔFosB is both necessary and sufficient for cocaine induction of CaMKIIα gene expression in vivo, an effect selective for D1-type MSNs in the NAc shell subregion. Furthermore, induction of dendritic spines on NAc MSNs and increased behavioral responsiveness to cocaine after NAc overexpression of ΔFosB are both CaMKII dependent. Importantly, we demonstrate for the first time induction of ΔFosB and CaMKII in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These data establish that ΔFosB and CaMKII engage in a cell-type- and brain-region-specific positive feedforward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cocaine-Related Disorders/pathology , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Nucleus Accumbens/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Adolescent , Adult , Aged , Analysis of Variance , Animals , Benzazepines/pharmacology , Calcium/metabolism , Chromatin Immunoprecipitation , Cocaine-Related Disorders/metabolism , Cohort Studies , Dopamine Antagonists/pharmacology , Female , Gene Expression Regulation/drug effects , Genetic Vectors/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Neural Pathways/drug effects , Neural Pathways/metabolism , Nucleus Accumbens/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , Proto-Oncogene Proteins c-fos/genetics , Rats , Salicylamides/pharmacology , Serine/metabolism , Young Adult
19.
Cell ; 152(1-2): 236-47, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23332758

ABSTRACT

The sigma-1 receptor (Sig-1R), an endoplasmic reticulum (ER) chaperone protein, is an interorganelle signaling modulator that potentially plays a role in drug-seeking behaviors. However, the brain site of action and underlying cellular mechanisms remain unidentified. We found that cocaine exposure triggers a Sig-1R-dependent upregulation of D-type K(+) current in the nucleus accumbens (NAc) that results in neuronal hypoactivity and thereby enhances behavioral cocaine response. Combining ex vivo and in vitro studies, we demonstrated that this neuroadaptation is caused by a persistent protein-protein association between Sig-1Rs and Kv1.2 channels, a phenomenon that is associated to a redistribution of both proteins from intracellular compartments to the plasma membrane. In conclusion, the dynamic Sig-1R-Kv1.2 complex represents a mechanism that shapes neuronal and behavioral response to cocaine. Functional consequences of Sig-1R binding to K(+) channels may have implications for other chronic diseases where maladaptive intrinsic plasticity and Sig-1Rs are engaged.


Subject(s)
Cocaine/administration & dosage , Kv1.2 Potassium Channel/metabolism , Neuronal Plasticity , Nucleus Accumbens/metabolism , Receptors, sigma/metabolism , Animals , Drug-Seeking Behavior , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Receptors, sigma/genetics , Sigma-1 Receptor
20.
Trends Neurosci ; 35(12): 762-71, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23102998

ABSTRACT

Sigma-1 receptors (Sig-1Rs) have been implicated in many neurological and psychiatric conditions. Sig-1Rs are intracellular chaperones that reside specifically at the endoplasmic reticulum (ER)-mitochondrion interface, referred to as the mitochondrion-associated ER membrane (MAM). Here, Sig-1Rs regulate ER-mitochondrion Ca(2+) signaling. In this review, we discuss the current understanding of Sig-1R functions. Based on this, we suggest that the key cellular mechanisms linking Sig-1Rs to neurological disorders involve the translocation of Sig-1Rs from the MAM to other parts of the cell, whereby Sig-1Rs bind and modulate the activities of various ion channels, receptors, or kinases. Thus, Sig-1Rs and their associated ligands may represent new avenues for treating aspects of neurological and psychiatric diseases.


Subject(s)
Mental Disorders/metabolism , Neuronal Plasticity/physiology , Receptors, sigma/physiology , Animals , Calcium Signaling/physiology , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/metabolism , Sigma-1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...