Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(28): 19088-19100, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38946086

ABSTRACT

Antibody-drug conjugates (ADCs) for the treatment of cancer aim to achieve selective delivery of a cytotoxic payload to tumor cells while sparing normal tissue. In vivo, multiple tumor-dependent and -independent processes act on ADCs and their released payloads to impact tumor-versus-normal delivery, often resulting in a poor therapeutic window. An ADC with a labeled payload would make synchronous correlations between distribution and tissue-specific pharmacological effects possible, empowering preclinical and clinical efforts to improve tumor-selective delivery; however, few methods to label small molecules without destroying their pharmacological activity exist. Herein, we present a bioorthogonal switch approach that allows a radiolabel attached to an ADC payload to be removed tracelessly at will. We exemplify this approach with a potent DNA-damaging agent, the pyrrolobenzodiazepine (PBD) dimer, delivered as an antibody conjugate targeted to lung tumor cells. The radiometal chelating group, DOTA, was attached via a novel trans-cyclooctene (TCO)-caged self-immolative para-aminobenzyl (PAB) linker to the PBD, stably attenuating payload activity and allowing tracking of biodistribution in tumor-bearing mice via SPECT-CT imaging (live) or gamma counting (post-mortem). Following TCO-PAB-DOTA reaction with tetrazines optimized for extra- and intracellular reactivity, the label was removed to reveal the unmodified PBD dimer capable of inducing potent tumor cell killing in vitro and in mouse xenografts. The switchable antibody radio-drug conjugate (ArDC) we describe integrates, but decouples, the two functions of a theranostic given that it can serve as a diagnostic for payload delivery in the labeled state, but can be switched on demand to a therapeutic agent (an ADC).


Subject(s)
Immunoconjugates , Tomography, Emission-Computed, Single-Photon , Immunoconjugates/chemistry , Humans , Animals , Mice , Benzodiazepines/chemistry , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Pyrroles/chemistry
2.
Chem Sci ; 13(11): 3147-3160, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414872

ABSTRACT

The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and in vivo efficacy for ADCs. Herein, we describe the development of a novel bioconjugation platform combining cysteine-engineered (THIOMAB) antibodies and recombinant XTEN polypeptides for the unprecedented generation of homogeneous, stable "TXCs" with DAR of up to 18. Across three different bioactive payloads, we demonstrated improved AMD to tumors and Staphylococcus aureus bacteria for high-DAR TXCs relative to conventional low-DAR ADCs.

3.
Mol Cancer Ther ; 20(6): 1112-1120, 2021 06.
Article in English | MEDLINE | ID: mdl-33722856

ABSTRACT

Calicheamicin antibody-drug conjugates (ADCs) are effective therapeutics for leukemias with two recently approved in the United States: Mylotarg (gemtuzumab ozogamicin) targeting CD33 for acute myeloid leukemia and Besponsa (inotuzumab ozogamicin) targeting CD22 for acute lymphocytic leukemia. Both of these calicheamicin ADCs are heterogeneous, aggregation-prone, and have a shortened half-life due to the instability of the acid-sensitive hydrazone linker in circulation. We hypothesized that we could improve upon the heterogeneity, aggregation, and circulation stability of calicheamicin ADCs by directly attaching the thiol of a reduced calicheamicin to an engineered cysteine on the antibody via a disulfide bond to generate a linkerless and traceless conjugate. We report herein that the resulting homogeneous conjugates possess minimal aggregation and display high in vivo stability with 50% of the drug remaining conjugated to the antibody after 21 days. Furthermore, these calicheamicin ADCs are highly efficacious in mouse models of both solid tumor (HER2+ breast cancer) and hematologic malignancies (CD22+ non-Hodgkin lymphoma). Safety studies in rats with this novel calicheamicin ADC revealed an increased tolerability compared with that reported for Mylotarg. Overall, we demonstrate that applying novel linker chemistry with site-specific conjugation affords an improved, next-generation calicheamicin ADC.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Calicheamicins/therapeutic use , Immunoconjugates/therapeutic use , Animals , Antibiotics, Antineoplastic/pharmacology , Calicheamicins/pharmacology , Disease Models, Animal , Humans , Immunoconjugates/pharmacology , Mice
4.
J Med Chem ; 64(5): 2534-2575, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33596065

ABSTRACT

The biological and medicinal impacts of proteolysis-targeting chimeras (PROTACs) and related chimeric molecules that effect intracellular degradation of target proteins via ubiquitin ligase-mediated ubiquitination continue to grow. However, these chimeric entities are relatively large compounds that often possess molecular characteristics, which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. We therefore explored the conjugation of such molecules to monoclonal antibodies using technologies originally developed for cytotoxic payloads so as to provide alternate delivery options for these novel agents. In this report, we describe the first phase of our systematic development of antibody-drug conjugates (ADCs) derived from bromodomain-containing protein 4 (BRD4)-targeting chimeric degrader entities. We demonstrate the antigen-dependent delivery of the degrader payloads to PC3-S1 prostate cancer cells along with related impacts on MYC transcription and intracellular BRD4 levels. These experiments culminate with the identification of one degrader conjugate, which exhibits antigen-dependent antiproliferation effects in LNCaP prostate cancer cells.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Dipeptides/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Immunoconjugates/pharmacology , Proteolysis/drug effects , Transcription Factors/antagonists & inhibitors , Antibodies, Monoclonal/immunology , Antigens, Neoplasm/immunology , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Dipeptides/chemical synthesis , Dipeptides/pharmacokinetics , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Oxidoreductases/immunology , PC-3 Cells , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
5.
J Med Chem ; 64(5): 2576-2607, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33596073

ABSTRACT

Heterobifunctional compounds that direct the ubiquitination of intracellular proteins in a targeted manner via co-opted ubiquitin ligases have enormous potential to transform the field of medicinal chemistry. These chimeric molecules, often termed proteolysis-targeting chimeras (PROTACs) in the chemical literature, enable the controlled degradation of specific proteins via their direction to the cellular proteasome. In this report, we describe the second phase of our research focused on exploring antibody-drug conjugates (ADCs), which incorporate BRD4-targeting chimeric degrader entities. We employ a new BRD4-binding fragment in the construction of the chimeric ADC payloads that is significantly more potent than the corresponding entity utilized in our initial studies. The resulting BRD4-degrader antibody conjugates exhibit potent and antigen-dependent BRD4 degradation and antiproliferation activities in cell-based experiments. Multiple ADCs bearing chimeric BRD4-degrader payloads also exhibit strong, antigen-dependent antitumor efficacy in mouse xenograft assessments that employ several different tumor models.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Cell Proliferation/drug effects , Immunoconjugates/therapeutic use , Neoplasms/drug therapy , Proteolysis/drug effects , Transcription Factors/antagonists & inhibitors , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Antigens, Neoplasm/immunology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Dipeptides/chemical synthesis , Dipeptides/pharmacokinetics , Dipeptides/therapeutic use , Female , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Immunoconjugates/immunology , Immunoconjugates/pharmacokinetics , Mice, SCID , Oxidoreductases/immunology , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Xenograft Model Antitumor Assays
6.
MAbs ; 13(1): 1862452, 2021.
Article in English | MEDLINE | ID: mdl-33382956

ABSTRACT

Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco-cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P-glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco-CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Surface/immunology , Antineoplastic Agents/immunology , Immunoconjugates/immunology , Oligopeptides/immunology , Xenograft Model Antitumor Assays/methods , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/immunology , Female , GPI-Linked Proteins/immunology , HEK293 Cells , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Mice, SCID , Rats, Sprague-Dawley , Tumor Burden/drug effects , Tumor Burden/immunology
7.
J Med Chem ; 63(17): 9603-9622, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787101

ABSTRACT

Cytotoxic pyrrolobenzodiazepine (PBD)-dimer molecules are frequently utilized as payloads for antibody-drug conjugates (ADCs), and many examples are currently in clinical development. In order to further explore this ADC payload class, the physicochemical properties of various PBD-dimer molecules were modified by the systematic introduction of acidic and basic moieties into their chemical structures. The impact of these changes on DNA binding, cell membrane permeability, and in vitro antiproliferation potency was, respectively, determined using a DNA alkylation assay, PAMPA assessments, and cell-based cytotoxicity measurements conducted with a variety of cancer lines. The modified PBD-dimer compounds were subsequently incorporated into CD22-targeting ADCs, and these entities were profiled in a variety of in vitro and in vivo experiments. The introduction of a strongly basic moiety into the PBD-dimer scaffold afforded a conjugate with dramatically worsened mouse tolerability properties relative to ADCs derived from related payloads, which lacked the basic group.


Subject(s)
Benzodiazepines/chemistry , Dimerization , Immunoconjugates/adverse effects , Immunoconjugates/chemistry , Pyrroles/chemistry , Safety , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Chemical Phenomena , DNA/chemistry , DNA/metabolism , Humans , Immunoconjugates/metabolism , Immunoconjugates/pharmacology , Models, Molecular , Nucleic Acid Conformation
8.
MAbs ; 12(1): 1715705, 2020.
Article in English | MEDLINE | ID: mdl-31997712

ABSTRACT

For antibody-drug conjugates to be efficacious and safe, they must be stable in circulation to carry the payload to the site of the targeted cell. Several components of a drug-conjugated antibody are known to influence stability: 1) the site of drug attachment on the antibody, 2) the linker used to attach the payload to the antibody, and 3) the payload itself. In order to support the design and optimization of a high volume of drug conjugates and avoid unstable conjugates prior to testing in animal models, we wanted to proactively identify these potential liabilities. Therefore, we sought to establish an in vitro screening method that best correlated with in vivo stability. While traditionally plasma has been used to assess in vitro stability, our evaluation using a variety of THIOMABTM antibody-drug conjugates revealed several disconnects between the stability assessed in vitro and the in vivo outcomes when using plasma. When drug conjugates were incubated in vitro for 24 h in mouse whole blood rather than plasma and then analyzed by affinity capture LC-MS, we found an improved correlation to in vivo stability with whole blood (R2 = 0.87, coefficient of determination) compared to unfrozen or frozen mouse plasma (R2 = 0.34, 0.01, respectively). We further showed that this whole blood assay was also able to predict in vivo stability of other preclinical species such as rat and cynomolgus monkey, as well as in human. The screening method utilized short (24 h) incubation times, as well as a custom analysis software, allowing increased throughput and in-depth biotransformation characterization. While some instabilities that were more challenging to identify remain, the method greatly enhanced the process of screening, optimizing, and lead candidate selection, resulting in the substantial reduction of animal studies.


Subject(s)
Chromatography, Liquid/methods , Immunoconjugates/chemistry , Mass Spectrometry/methods , Animals , Humans , In Vitro Techniques , Protein Stability
9.
ChemMedChem ; 15(1): 17-25, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31674143

ABSTRACT

The ability to selectively degrade proteins with bifunctional small molecules has the potential to fundamentally alter therapy in a variety of diseases. However, the relatively large size of these chimeric molecules often results in challenging physico-chemical properties (e. g., low aqueous solubility) and poor pharmacokinetics which may complicate their in vivo applications. We recently discovered an exquisitely potent chimeric BET degrader (GNE-987) which exhibited picomolar cell potencies but also demonstrated low in vivo exposures. In an effort to improve the pharmacokinetic properties of this molecule, we discovered the first degrader-antibody conjugate by attaching GNE-987 to an anti-CLL1 antibody via a novel linker. A single IV dose of the conjugate afforded sustained in vivo exposures that resulted in antigen-specific tumor regressions. Enhancement of a chimeric protein degrader with poor in vivo properties through antibody conjugation thereby expands the utility of directed protein degradation as both a biological tool and a therapeutic possibility.


Subject(s)
Antibodies, Monoclonal/chemistry , Cell Cycle Proteins/metabolism , Heterocyclic Compounds, 4 or More Rings/chemistry , Immunoconjugates/chemistry , Transcription Factors/metabolism , Animals , Antibodies, Monoclonal/immunology , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Female , Half-Life , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lectins, C-Type/immunology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Mice , Mice, SCID , Protein Binding , Proteolysis/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Mitogen/immunology , Surface Plasmon Resonance , Transcription Factors/antagonists & inhibitors , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Xenograft Model Antitumor Assays
10.
Bioconjug Chem ; 30(12): 3046-3056, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31726009

ABSTRACT

Disulfide-linked bioconjugates allow the delivery of pharmacologically active or other cargo to specific tissues in a redox-sensitive fashion. However, an understanding of the kinetics, subcellular distribution, and mechanism of disulfide cleavage in such bioconjugates is generally lacking. Here, we report a modular disulfide-linked TAMRA-BODIPY based FRET probe that can be readily synthesized, modified, and conjugated to a cysteine-containing biomolecule to enable real-time monitoring of disulfide cleavage during receptor-mediated endocytosis in cells. We demonstrate the utility of this probe to study disulfide reduction during HER2 receptor-mediated uptake of a Cys-engineered anti-HER2 THIOMAB antibody. We found that introduction of positive, but not negative, charges in the probe improved retention of the BODIPY catabolite. This permitted the observation of significant disulfide cleavage in endosomes or lysosomes on par with proteolytic cleavage of a similarly charged valine-citrulline peptide-based probe. In general, the FRET probe we describe should enable real-time cellular monitoring of disulfide cleavage in other targeted delivery systems for mechanistic or diagnostic applications. Furthermore, modifications to the released BODIPY moiety permit evaluation of physicochemical properties that govern lysosomal egress or retention, which may have implications for the development of next-generation antibody-drug conjugates.


Subject(s)
Cysteine/chemistry , Disulfides/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Animals , Boron Compounds , Drug Monitoring/methods , Endocytosis , Endosomes/metabolism , Fluorescence Resonance Energy Transfer/trends , Humans , Immunoconjugates , Lysosomes/metabolism , Receptor, ErbB-2/immunology , Rhodamines
11.
Oncotarget ; 10(58): 6234-6244, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31692898

ABSTRACT

TENB2, a transmembrane proteoglycan protein, is a promising target for antibody drug conjugate (ADC) therapy due to overexpression in human prostate tumors and rapid internalization. We previously characterized how predosing with parental anti-TENB2 monoclonal antibody (mAb) at 1 mg/kg in a patient-derived LuCap77 explant model with high (3+) TENB2 expression could (i) block target-mediated intestinal uptake of tracer (& 0.1 mg/kg) levels of radiolabeled anti-TENB2-monomethyl auristatin E ADC while preserving tumor uptake, and (ii) maintain efficacy relative to ADC alone. Here, we systematically revisit this strategy to evaluate the effects of predosing on tumor uptake and efficacy in LuCap96.1, a low TENB2-expressing (1+) patient-derived model that is more responsive to ADC therapy than LuCap77. Importantly, rather than using tracer (& 0.1 mg/kg) levels, radiolabeled ADC tumor uptake was assessed at 1 mg/kg - one of the doses evaluated in the tumor growth inhibition study - in an effort to bridge tissue distribution (PK) with efficacy (PD). Predosing with mAb up to 1 mg/kg had no effect on efficacy. These findings warrant further investigations to determine whether predosing prior to ADC therapy might improve therapeutic index by preventing ADC disposition and possible toxicological liabilities in antigen-expressing healthy tissues.

13.
Br J Pharmacol ; 176(19): 3805-3818, 2019 10.
Article in English | MEDLINE | ID: mdl-31270798

ABSTRACT

BACKGROUND AND PURPOSE: Polatuzumab vedotin is an antibody-drug conjugate (ADC) being developed for non-Hodgkin's lymphoma. It contains a humanized anti-CD79b IgG1 monoclonal antibody linked to monomethyl auristatin E (MMAE), an anti-mitotic agent. Polatuzumab vedotin binds to human CD79b only. Therefore, a surrogate ADC that binds to cynomolgus monkey CD79b was used to determine CD79b-mediated pharmacological effects in the monkey and to enable first-in-human clinical trials. EXPERIMENTAL APPROACH: Polatuzumab vedotin, the surrogate ADC, and the corresponding antibodies were evaluated in different assays in vitro and in animals. In vitro assessments included binding to peripheral blood mononuclear cells from different species, binding to a human and monkey CD79b-expressing cell line, binding to human Fcγ receptors, and stability in plasma across species. In vivo, ADCs were assessed for anti-tumour activity in mice, pharmacokinetics/pharmacodynamics in monkeys, and toxicity in rats and monkeys. KEY RESULTS: Polatuzumab vedotin and surrogate ADC bind with similar affinity to human and cynomolgus monkey B cells, respectively. Comparable in vitro plasma stability, in vivo anti-tumour activity, and mouse pharmacokinetics were also observed between the surrogate ADC and polatuzumab vedotin. In monkeys, only the surrogate ADC showed B-cell depletion and B-cell-mediated drug disposition, but both ADCs showed similar MMAE-driven myelotoxicity, as expected. CONCLUSIONS AND IMPLICATIONS: The suitability of the surrogate ADC for evaluation of CD79b-dependent pharmacology was demonstrated, and anti-tumour activity, pharmacokinetics/pharmacodynamics, and toxicity data with both ADCs supported the entry of polatuzumab vedotin into clinical trials.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Burkitt Lymphoma/drug therapy , CD79 Antigens/antagonists & inhibitors , Immunoconjugates/pharmacology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/chemistry , Antineoplastic Agents/immunology , Binding Sites/drug effects , Burkitt Lymphoma/pathology , CD79 Antigens/immunology , Cell Line , Dose-Response Relationship, Drug , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Macaca fascicularis , Male , Mice , Mice, SCID , Molecular Conformation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Rats , Rats, Sprague-Dawley , Receptors, IgG , Structure-Activity Relationship
14.
Drug Metab Dispos ; 47(10): 1156-1163, 2019 10.
Article in English | MEDLINE | ID: mdl-31085544

ABSTRACT

In cells, catalytic disulfide cleavage is an essential mechanism in protein folding and synthesis. However, detailed enzymatic catalytic mechanism relating cleavage of disulfide bonds in xenobiotics is not well understood. This study reports an enzymatic mechanism of cleavage of disulfide bonds in xenobiotic small molecules and antibody conjugate (ADC) linkers. The chemically stable disulfide bonds in substituted disulfide-containing pyrrolobenzodiazepine (PBD, pyrrolo[2,1-c][1,4]benzodiazepine) monomer prodrugs in presence of glutathione or cysteine were found to be unstable in incubations in whole blood of humans and rats. It was shown the enzymes involved were thioredoxin (TRX) and glutaredoxin (GRX). For a diverse set of drug-linker conjugates, we determined that TRX in the presence of TRX-reductase and NADPH generated the cleaved products that are consistent with catalytic disulfide cleavage and linker immolation. GRX was less rigorously studied; in the set of compounds studied, its role in the catalytic cleavage was also confirmed. Collectively, these in vitro experiments demonstrate that TRX as well as GRX can catalyze the cleavage of disulfide bonds in both small molecules and linkers of ADCs.


Subject(s)
Glutaredoxins/metabolism , Immunoconjugates/pharmacokinetics , Thioredoxins/metabolism , Animals , Benzodiazepines/chemistry , Benzodiazepines/metabolism , Disulfides/chemistry , Disulfides/metabolism , Female , Humans , Immunoconjugates/chemistry , Male , Pyrroles/chemistry , Pyrroles/metabolism , Rats , Recombinant Proteins/metabolism , Thioredoxin-Disulfide Reductase/metabolism
15.
Bioconjug Chem ; 30(5): 1356-1370, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30966735

ABSTRACT

This work discloses the first examples of antibody-drug conjugates (ADCs) that are constructed from linker-drugs bearing dimeric seco-CBI payloads (duocarmycin analogs). Several homogeneous, CD22-targeting THIOMAB antibody-drug conjugates (TDCs) containing the dimeric seco-CBI entities are shown to be highly efficacious in the WSU-DLCL2 and BJAB mouse xenograft models. Surprisingly, the seco-CBI-containing conjugates are also observed to undergo significant biotransformation in vivo in mice, rats, and monkeys and thereby form 1:1 adducts with the Alpha-1-Microglobulin (A1M) plasma protein from these species. Variation of both the payload mAb attachment site and length of the linker-drug is shown to alter the rates of adduct formation. Subsequent experiments demonstrated that adduct formation attenuates the in vitro antiproliferation activity of the affected seco-CBI-dimer TDCs, but does not significantly impact the in vivo efficacy of the conjugates. In vitro assays employing phosphatase-treated whole blood suggest that A1M adduct formation is likely to occur if the seco-CBI-dimer TDCs are administered to humans. Importantly, protein adduct formation leads to the underestimation of total antibody (Tab) concentrations using an ELISA assay but does not affect Tab values determined via an orthogonal LC-MS/MS method. Several recommendations regarding bioanalysis of future in vivo studies involving related seco-CBI-containing ADCs are provided based on these collective findings.


Subject(s)
Alpha-Globulins/chemistry , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dimerization , Haplorhini , Humans , Immunoconjugates/chemistry , Mice , Rats , Xenograft Model Antitumor Assays
16.
Bioconjug Chem ; 30(1): 148-160, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30566343

ABSTRACT

Site-specific conjugation of small molecules to antibodies represents an attractive goal for the development of more homogeneous targeted therapies and diagnostics. Most site-specific conjugation strategies require modification or removal of antibody glycans or interchain disulfide bonds or engineering of an antibody mutant that bears a reactive handle. While such methods are effective, they complicate the process of preparing antibody conjugates and can negatively impact biological activity. Herein we report the development and detailed characterization of a robust photoaffinity cross-linking method for site-specific conjugation to fully glycosylated wild-type antibodies. The method employs a benzoylphenylalanine (Bpa) mutant of a previously described 13-residue peptide derived from phage display to bind tightly to the Fc domain; upon UV irradiation, the Bpa residue forms a diradical that reacts with the bound antibody. After the initial discovery of an effective Bpa mutant peptide and optimization of the reaction conditions to enable efficient conjugation without concomitant UV-induced photodamage of the antibody, we assessed the scope of the photoconjugation reaction across different human and nonhuman antibodies and antibody mutants. Next, the specific site of conjugation on a human antibody was characterized in detail by mass spectrometry experiments and at atomic resolution by X-ray crystallography. Finally, we adapted the photoconjugation method to attach a cytotoxic payload site-specifically to a wild-type antibody and showed that the resulting conjugate is both stable in plasma and as potent as a conventional antibody-drug conjugate in cells, portending well for future biological applications.


Subject(s)
Antibodies/chemistry , Cross-Linking Reagents/chemistry , Immunoconjugates/chemistry , Peptides/chemistry , Photoaffinity Labels/chemistry , Animals , Humans , Mutation , Oxidation-Reduction , Photochemical Processes , Protein Binding , Protein Conformation , Surface Plasmon Resonance
17.
MAbs ; 10(8): 1312-1321, 2018.
Article in English | MEDLINE | ID: mdl-30183491

ABSTRACT

Few treatment options are available for acute myeloid leukemia (AML) patients. DCLL9718A is an antibody-drug conjugate that targets C-type lectin-like molecule-1 (CLL-1). This receptor is prevalent on monocytes, neutrophils, and AML blast cells, and unlike CD33, is not expressed on hematopoietic stem cells, thus providing possible hematopoietic recovery. DCLL9718A comprises an anti-CLL-1 IgG1 antibody (MCLL0517A) linked to a pyrrolobenzodiazepine (PBD) dimer payload, via a cleavable disulfide-labile linker. Here, we characterize the in vitro and in vivo stability, the pharmacokinetics (PK) and pharmacodynamics (PD) of DCLL9718A and MCLL0517A in rodents and cynomolgus monkeys. Three key PK analytes were measured in these studies: total antibody, antibody-conjugated PBD dimer and unconjugated PBD dimer. In vitro, DCLL9718A, was stable with most (> 80%) of the PBD dimer payload remaining conjugated to the antibody over 96 hours. This was recapitulated in vivo with antibody-conjugated PBD dimer clearance estimates similar to DCLL9718A total antibody clearance. Both DCLL9718A and MCLL0517A showed linear PK in the non-binding rodent species, and non-linear PK in cynomolgus monkeys, a binding species. The PK data indicated minimal impact of conjugation on the disposition of DCLL9718A total antibody. Finally, in cynomolgus monkey, MCLL0517A showed target engagement at all doses tested (0.5 and 20 mg/kg) as measured by receptor occupancy, and DCLL9718A (at doses of 0.05, 0.1 and 0.2 mg/kg) showed strong PD activity as evidenced by notable reduction in monocytes and neutrophils.


Subject(s)
Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/metabolism , Acute Disease , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Area Under Curve , Benzodiazepines/immunology , Benzodiazepines/therapeutic use , Humans , Immunoconjugates/immunology , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Lectins, C-Type/immunology , Leukemia, Myeloid/blood , Macaca fascicularis , Metabolic Clearance Rate , Mice , Pyrroles/immunology , Pyrroles/therapeutic use , Rats , Receptors, Mitogen/immunology , Species Specificity
18.
Mol Pharm ; 15(9): 3979-3996, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30040421

ABSTRACT

A number of cytotoxic pyrrolobenzodiazepine (PBD) monomers containing various disulfide-based prodrugs were evaluated for their ability to undergo activation (disulfide cleavage) in vitro in the presence of either glutathione (GSH) or cysteine (Cys). A good correlation was observed between in vitro GSH stability and in vitro cytotoxicity toward tumor cell lines. The prodrug-containing compounds were typically more potent against cells with relatively high intracellular GSH levels (e.g., KPL-4 cells). Several antibody-drug conjugates (ADCs) were subsequently constructed from PBD dimers that incorporated selected disulfide-based prodrugs. Such HER2 conjugates exhibited potent antiproliferation activity against KPL-4 cells in vitro in an antigen-dependent manner. However, the disulfide prodrugs contained in the majority of such entities were surprisingly unstable toward whole blood from various species. One HER2-targeting conjugate that contained a thiophenol-derived disulfide prodrug was an exception to this stability trend. It exhibited potent activity in a KPL-4 in vivo efficacy model that was approximately three-fold weaker than that displayed by the corresponding parent ADC. The same prodrug-containing conjugate demonstrated a three-fold improvement in mouse tolerability properties in vivo relative to the parent ADC, which did not contain the prodrug.


Subject(s)
Benzodiazepines/chemistry , Disulfides/chemistry , Immunoconjugates/chemistry , Prodrugs/chemistry , Pyrroles/chemistry , Cell Line, Tumor , Cysteine/metabolism , Glutathione/metabolism , Humans , Immunoconjugates/metabolism , Molecular Structure
19.
Bioconjug Chem ; 29(7): 2468-2477, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29856915

ABSTRACT

Despite the recent success of antibody-drug conjugates (ADCs) in cancer therapy, a detailed understanding of their entry, trafficking, and metabolism in cancer cells is limited. To gain further insight into the activation mechanism of ADCs, we incorporated fluorescence resonance energy transfer (FRET) reporter groups into the linker connecting the antibody to the drug and studied various aspects of intracellular ADC processing mechanisms. When comparing the trafficking of the antibody-FRET drug conjugates in various different model cells, we found that the cellular background plays an important role in how the antigen-mediated antibody is processed. Certain tumor cells showed limited cytosolic transport of the payload despite efficient linker cleavage. Our FRET assay provides a facile and robust assessment of intracellular ADC activation that may have significant implications for the future development of ADCs.


Subject(s)
Biological Transport , Fluorescence Resonance Energy Transfer , Immunoconjugates/pharmacokinetics , Cell Membrane Permeability , Cross-Linking Reagents/chemistry , Humans , Immunoconjugates/metabolism , Peptides
20.
MAbs ; 10(5): 738-750, 2018 07.
Article in English | MEDLINE | ID: mdl-29757698

ABSTRACT

For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.


Subject(s)
Algorithms , Antibodies, Monoclonal/pharmacokinetics , Immunoconjugates/pharmacokinetics , Models, Biological , Sialic Acid Binding Ig-like Lectin 3/immunology , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , HEK293 Cells , Humans , Immunoconjugates/immunology , Macaca fascicularis , Prospective Studies , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL