Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nutrients ; 13(11)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34836222

ABSTRACT

Cruciferous vegetables, widely present in daily diets, are a rich source of organosulfur compounds with proven health benefits, especially chemopreventive or antioxidative effects. Isothiocyanate derivatives (ITCs) exhibit a broad spectrum of biological and pharmacological activity and recently, their antibacterial properties have been of particular importance. Here, we have focused on the anti-shigellosis activity of sulforaphane (SFN) and phenethyl ITC (PEITC). The genus Shigella causes gastroenteritis in humans, which constitutes a threat to public health. Production of a potent Stx toxin by S. dysenteriae type 1 results not only in more severe symptoms but also in serious sequela, including the hemolytic uremic syndrome. Here, we present evidence that two aliphatic and aromatic ITCs derivatives, SFN and PEITC, have an effective antibacterial potency against S. dysenteriae, also negatively regulating the stx gene expression. The molecular mechanism of this effect involves induction of the global stress-induced stringent response. ITCs also inhibit bacterial virulence against the Vero and HeLa cells. We present evidence for the therapeutic effect of sulforaphane and phenethyl ITC against a S. dysenteriae infection in the Galleria mellonella larvae model. Thus, our results indicate that isothiocyanates can be effectively used to combat dangerous bacterial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Isothiocyanates/pharmacology , Moths/microbiology , Shigella dysenteriae/drug effects , Sulfoxides/pharmacology , Animals , Chlorocebus aethiops , Diet , HeLa Cells , Hemocytes/drug effects , Hemocytes/physiology , Humans , Larva/microbiology , Microbial Sensitivity Tests , Moths/drug effects , Phagocytosis , Shiga Toxin/biosynthesis , Shiga Toxin/genetics , Shigella dysenteriae/growth & development , Shigella dysenteriae/metabolism , Shigella dysenteriae/pathogenicity , Vero Cells
2.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34638525

ABSTRACT

Vibrio cholerae represents a constant threat to public health, causing widespread infections, especially in developing countries with a significant number of fatalities and serious complications every year. The standard treatment by oral rehydration does not eliminate the source of infection, while increasing antibiotic resistance among pathogenic V. cholerae strains makes the therapy difficult. Thus, we assessed the antibacterial potential of plant-derived phytoncides, isothiocyanates (ITC), against V. cholerae O365 strain. Sulforaphane (SFN) and 2-phenethyl isothiocyanate (PEITC) ability to inhibit bacterial growth was assessed. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values indicate that these compounds possess antibacterial activity and are also effective against cells growing in a biofilm. Tested ITC caused accumulation of stringent response alarmone, ppGpp, which indicates induction of the global stress response. It was accompanied by bacterial cytoplasm shrinkage, the inhibition of the DNA, and RNA synthesis as well as downregulation of the expression of virulence factors. Most importantly, ITC reduced the toxicity of V. cholerae in the in vitro assays (against Vero and HeLa cells) and in vivo, using Galleria mellonella larvae as an infection model. In conclusion, our data indicate that ITCs might be considered promising antibacterial agents in V. cholerae infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cholera/diet therapy , Isothiocyanates/pharmacology , Moths/microbiology , Sulfoxides/pharmacology , Vibrio cholerae/drug effects , Animals , Biofilms/drug effects , Cell Line , Chlorocebus aethiops , DNA/biosynthesis , Disease Models, Animal , Guanosine Tetraphosphate/biosynthesis , HeLa Cells , Humans , Microbial Sensitivity Tests , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA/biosynthesis , Vero Cells , Vibrio cholerae/pathogenicity , Virulence/drug effects , Virulence Factors/biosynthesis
3.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072628

ABSTRACT

Bacteriophage P1 is among the best described bacterial viruses used in molecular biology. Here, we report that deficiency in the host cell DksA protein, an E. coli global transcription regulator, improves P1 lytic development. Using genetic and microbiological approaches, we investigated several aspects of P1vir biology in an attempt to understand the basis of this phenomenon. We found several minor improvements in phage development in the dksA mutant host, including more efficient adsorption to bacterial cell and phage DNA replication. In addition, gene expression of the main repressor of lysogeny C1, the late promoter activator Lpa, and lysozyme are downregulated in the dksA mutant. We also found nucleotide substitutions located in the phage immunity region immI, which may be responsible for permanent virulence of phage P1vir. We suggest that downregulation of C1 may lead to a less effective repression of lysogeny maintaining genes and that P1vir may be balancing between lysis and lysogeny, although finally it is able to enter the lytic pathway only. The mentioned improvements, such as more efficient replication and more "gentle" cell lysis, while considered minor individually, together may account for the phenomenon of a more efficient P1 phage development in a DksA-deficient host.


Subject(s)
Bacteriophages/physiology , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli/virology , Gene Deletion , Host-Pathogen Interactions , Gene Expression Regulation, Viral , Lysogeny , Mutation , Virus Replication
4.
Int J Mol Sci ; 21(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570789

ABSTRACT

Marine bacteria display significant versatility in adaptation to variations in the environment and stress conditions, including temperature shifts. Shewanella baltica plays a major role in denitrification and bioremediation in the marine environment, but is also identified to be responsible for spoilage of ice-stored seafood. We aimed to characterize transcriptional response of S. baltica to cold stress in order to achieve a better insight into mechanisms governing its adaptation. We exposed bacterial cells to 8 °C for 90 and 180 min, and assessed changes in the bacterial transcriptome with RNA sequencing validated with the RT-qPCR method. We found that S. baltica general response to cold stress is associated with massive downregulation of gene expression, which covered about 70% of differentially expressed genes. Enrichment analysis revealed upregulation of only few pathways, including aminoacyl-tRNA biosynthesis, sulfur metabolism and the flagellar assembly process. Downregulation was observed for fatty acid degradation, amino acid metabolism and a bacterial secretion system. We found that the entire type II secretion system was transcriptionally shut down at low temperatures. We also observed transcriptional reprogramming through the induction of RpoE and repression of RpoD sigma factors to mediate the cold stress response. Our study revealed how diverse and complex the cold stress response in S. baltica is.


Subject(s)
Adaptation, Physiological , Gene Regulatory Networks , Shewanella/growth & development , Bacterial Proteins/genetics , Biodegradation, Environmental , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Sequence Analysis, RNA , Shewanella/genetics
5.
Genes (Basel) ; 11(4)2020 04 19.
Article in English | MEDLINE | ID: mdl-32325866

ABSTRACT

A direct link between DNA replication regulation and central carbon metabolism (CCM) has been previously demonstrated in Bacillus subtilis and Escherichia coli, as effects of certain mutations in genes coding for replication proteins could be specifically suppressed by particular mutations in genes encoding CCM enzymes. However, specific molecular mechanism(s) of this link remained unknown. In this report, we demonstrate that various CCM metabolites can suppress the effects of mutations in different replication genes of E. coli on bacterial growth, cell morphology, and nucleoid localization. This provides evidence that the CCM-replication link is mediated by metabolites rather than direct protein-protein interactions. On the other hand, action of metabolites on DNA replication appears indirect rather than based on direct influence on the replication machinery, as rate of DNA synthesis could not be corrected by metabolites in short-term experiments. This corroborates the recent discovery that in B. subtilis, there are multiple links connecting CCM to DNA replication initiation and elongation. Therefore, one may suggest that although different in detail, the molecular mechanisms of CCM-dependent regulation of DNA replication are similar in E. coli and B. subtilis, making this regulation an important and common constituent of the control of cell physiology in bacteria.


Subject(s)
Carbon/metabolism , DNA Replication , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolome
6.
J Appl Genet ; 61(1): 123-130, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31773499

ABSTRACT

Microorganisms are particularly adapted to alterations in their environment. One of the global regulatory mechanisms involved in these adaptations is the stringent response. The unusual nucleotides, guanosine penta and tetraphosphates, (p)ppGpp act as alarmones of this response, heralding nutrient limitation and stressors. Marine bacteria encounter numerous stresses of sparse nutrient supplies and changes in physicochemical conditions. The aim of this work was to assess whether the stress conditions common in marine environment can induce the stringent response and what is a kinetic of this process. The representative bacterial species, Shewanella baltica, Acinetobacter johnsonii, Vibrio harveyi, and Escherichia coli were subjected to a variety of stressors. We analyzed the kinetics of (p)ppGpp synthesis by labeling in vivo nucleotides and analysis by thin layer chromatography. The (p)ppGpp accumulation followed the elevated temperature and amino acid starvation for all bacteria tested. The carbon and nitrogen limitation resulted in the response limited to V. harveyi and S. baltica. The DNA damaging agents induced the (p)ppGpp production in all strains, while osmotic stress did not result in significant alarmone synthesis. The representative marine bacteria species were shown to induce with varying extent the stringent response upon the onset of stress and limitation conditions. Importantly, the in vivo labeling and subsequent separation of the nucleotides by thin layer chromatography serves as a valid method for the analysis of the stringent response and (p)ppGpp accumulation in environmental bacteria.


Subject(s)
Aquatic Organisms , Bacteria , Bacterial Physiological Phenomena , Guanosine Pentaphosphate/biosynthesis , Stress, Physiological , Bacteria/drug effects , Bacterial Physiological Phenomena/drug effects , DNA Damage/drug effects , Mutagens/pharmacology , Nutrients/metabolism
7.
Front Microbiol ; 11: 591802, 2020.
Article in English | MEDLINE | ID: mdl-33584562

ABSTRACT

Bacterial resistance to known antibiotics comprises a serious threat to public health. Propagation of multidrug-resistant pathogenic strains is a reason for undertaking a search for new therapeutic strategies, based on newly developed chemical compounds and the agents present in nature. Moreover, antibiotic treatment of infections caused by enterotoxin toxin-bearing strain-enterohemorrhagic Escherichia coli (EHEC) is considered hazardous and controversial due to the possibility of induction of bacteriophage-encoded toxin production by the antibiotic-mediated stress. The important source of potentially beneficial compounds are secondary plant metabolites, isothiocyanates (ITC), and phytoncides from the Brassicaceae family. We reported previously that sulforaphane and phenethyl isothiocyanate, already known for their chemopreventive and anticancer features, exhibit significant antibacterial effects against various pathogenic bacteria. The mechanism of their action is based on the induction of the stringent response and accumulation of its alarmones, the guanosine penta- and tetraphosphate. In this process, the amino acid starvation path is employed via the RelA protein, however, the precise mechanism of amino acid limitation in the presence of ITCs is yet unknown. In this work, we asked whether ITCs could act synergistically with each other to increase the antibacterial effect. A set of aliphatic ITCs, such as iberin, iberverin, alyssin, erucin, sulforaphen, erysolin, and cheirolin was tested in combination with sulforaphane against E. coli. Our experiments show that all tested ITCs exhibit strong antimicrobial effect individually, and this effect involves the stringent response caused by induction of the amino acid starvation. Interestingly, excess of specific amino acids reversed the antimicrobial effects of ITCs, where the common amino acid for all tested compounds was glycine. The synergistic action observed for iberin, iberverin, and alyssin also led to accumulation of (p)ppGpp, and the minimal inhibitory concentration necessary for the antibacterial effect was four- to eightfold lower than for individual ITCs. Moreover, the unique mode of ITC action is responsible for inhibition of prophage induction and toxin production, in addition to growth inhibition of EHEC strains. Thus, the antimicrobial effect of plant secondary metabolites by the stringent response induction could be employed in potential therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL