Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273246

ABSTRACT

Bacterial and fungal superinfections are common in COVID-19, and early diagnosis can enable timely intervention. Serum calprotectin levels increase with bacterial, fungal, and viral infections. This study evaluated serum calprotectin as a diagnostic and prognostic tool for microbial superinfections in COVID-19. Serum samples from adult patients with moderate and severe COVID-19 were collected during hospitalization from 2020 to 2024. Calprotectin levels were measured using an enzyme-linked immunosorbent assay in 63 patients with moderate COVID-19, 60 patients with severe COVID-19, and 34 healthy individuals. Calprotectin serum levels were elevated in patients with moderate COVID-19 compared with controls, and these levels were further increased in the severe cases. Patients with severe COVID-19 and vancomycin-resistant enterococci (VRE) bacteremia had elevated calprotectin levels, but their C-reactive protein and procalcitonin levels were not increased. Fungal superinfections and herpes simplex virus reactivation did not change the calprotectin levels. A calprotectin concentration of 31.29 µg/mL can be used to diagnose VRE bloodstream infection with 60% sensitivity and 96% specificity. These data suggest that serum calprotectin may be a promising biomarker for the early detection of VRE bloodstream infections in patients with COVID-19.


Subject(s)
Biomarkers , COVID-19 , Early Diagnosis , Leukocyte L1 Antigen Complex , SARS-CoV-2 , Humans , COVID-19/blood , COVID-19/diagnosis , COVID-19/complications , Leukocyte L1 Antigen Complex/blood , Biomarkers/blood , Male , Female , Middle Aged , Aged , SARS-CoV-2/isolation & purification , Adult , Drug Resistance, Multiple, Bacterial , Vancomycin-Resistant Enterococci , Bacteremia/blood , Bacteremia/diagnosis , Bacteremia/microbiology , C-Reactive Protein/metabolism , C-Reactive Protein/analysis
2.
Biomedicines ; 12(9)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39335612

ABSTRACT

BACKGROUND/OBJECTIVES: Chemerin is an adipokine involved in inflammatory and metabolic diseases, and its circulating levels have been associated with inflammatory parameters in various patient cohorts. Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, which causes COVID-19, triggers inflammatory pathways. However, the association between serum chemerin levels and COVID-19 disease severity and outcomes has not been definitively established. METHODS: In this study, serum chemerin levels were analyzed in 64 patients with moderate COVID-19 and 60 patients with severe disease. RESULTS: The results showed that serum chemerin levels were comparable between these two groups and slightly higher than in healthy controls. Notably, COVID-19 patients with hypertension exhibited elevated serum chemerin levels, while those with liver cirrhosis had lower levels. When patients with these comorbidities were excluded from the analyses, serum chemerin levels in COVID-19 patients were similar to those in healthy controls. Positive correlations were observed between serum chemerin levels and markers such as alkaline phosphatase, C-reactive protein, eosinophils, and lymphocytes in the entire cohort, as well as in the subgroup excluding patients with hypertension and cirrhosis. Additionally, urinary chemerin levels were comparable between COVID-19 patients and controls, and neither hypertension nor dialysis significantly affected urinary chemerin levels. Both survivors and non-survivors had similar serum and urinary chemerin levels. CONCLUSIONS: In conclusion, this study suggests that comorbidities such as arterial hypertension and liver cirrhosis do have a more significant impact on serum chemerin levels than SARS-CoV-2 infection itself.

3.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125730

ABSTRACT

Phosphatidylcholine (PC) is an essential lipid for liver health and lipoprotein metabolism, but its circulating levels have rarely been studied in patients with cirrhosis. Chronic hepatitis C virus (HCV) infection causes lipid abnormalities and is a major cause of cirrhosis. Effective HCV elimination with direct-acting antivirals (DAAs) is associated with the normalization of serum low-density lipoprotein cholesterol levels. Since PC is abundant in all lipoprotein particles, this study analyzed the association between serum PC species levels and liver cirrhosis before and after HCV eradication. Therefore, 27 PC species were measured by Fourier Transform Mass Spectrometry in the serum of 178 patients with chronic HCV infection at baseline and in 176 of these patients at the end of therapy. The PC species did not correlate with viral load, and the levels of 13 PC species were reduced in patients infected with genotype 3a compared to those affected with genotype 1. Four PC species were slightly elevated 12 weeks after DAA initiation, and genotype-related changes were largely normalized. Patients with HCV and cirrhosis had higher serum levels of PC 30:0 and 32:0 before and at the end of therapy. PC species containing polyunsaturated fatty acids were mostly decreased in cirrhosis. The levels of polyunsaturated, but not saturated, PC species were inversely correlated with the model of the end-stage liver disease score. A receiver operating characteristic curve analysis showed area under the curve values of 0.814 and 0.826 for PC 32:0 and 0.917 and 0.914 for % PC 32:0 (relative to the total PC levels) for the classification of cirrhosis at baseline and at the end of therapy, respectively. In conclusion, the specific upregulation of PC 32:0 in cirrhosis before and after therapy may be of diagnostic value in HCV-related cirrhosis.


Subject(s)
Biomarkers , Hepacivirus , Hepatitis C, Chronic , Liver Cirrhosis , Phosphatidylcholines , Humans , Phosphatidylcholines/blood , Liver Cirrhosis/blood , Liver Cirrhosis/virology , Liver Cirrhosis/diagnosis , Male , Female , Middle Aged , Biomarkers/blood , Hepacivirus/genetics , Hepatitis C, Chronic/blood , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Antiviral Agents/therapeutic use , Aged , Adult , Viral Load , ROC Curve , Genotype
4.
Viruses ; 16(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39066246

ABSTRACT

Neutrophils are critical immune cells in severe coronavirus disease 2019 (COVID-19). S100 calcium-binding protein A12 (S100A12) is highly expressed in neutrophils during acute inflammation. The aim of this study was to evaluate serum S100A12 levels as a diagnostic and prognostic tool in COVID-19. Serum samples of patients with moderate and severe COVID-19 were collected during 2020 to 2024. Enzyme-linked immunosorbent assay was used to measure serum S100A12 levels in 63 patients with moderate COVID-19, 60 patients with severe disease and 33 healthy controls. Serum S100A12 levels were elevated in moderate COVID-19 compared to controls and were even higher in severe cases. In moderate disease, serum S100A12 levels positively correlated with immune cell counts. While C-reactive protein and procalcitonin are established inflammation markers, they did not correlate with serum S100A12 levels in either patient cohort. Patients with severe COVID-19 and vancomycin-resistant enterococcus (VRE) infection had increased S100A12 levels. Elevated S100A12 levels were also observed in patients with herpes simplex reactivation. Fungal superinfections did not alter S100A12 levels. These data show that serum S100A12 increases in moderate and severe COVID-19 and is further elevated by VRE bloodstream infection and herpes simplex reactivation. Therefore, S100A12 may serve as a novel biomarker for severe COVID-19 and an early diagnostic indicator for bacterial and viral infections.


Subject(s)
Biomarkers , COVID-19 , Herpes Simplex , S100A12 Protein , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/blood , COVID-19/immunology , Male , Female , S100A12 Protein/blood , Middle Aged , Biomarkers/blood , SARS-CoV-2/immunology , Prognosis , Aged , Herpes Simplex/diagnosis , Herpes Simplex/blood , Adult , Severity of Illness Index , Superinfection/diagnosis , Superinfection/blood , Drug Resistance, Multiple, Bacterial , Neutrophils/immunology , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Vancomycin-Resistant Enterococci
5.
Infect Dis Rep ; 16(4): 593-607, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39051245

ABSTRACT

SARS-CoV-2 infection was shown to induce proprotein convertase subtilisin/kexin type 9 (PCSK9) plasma levels in sepsis. Here, we investigate the association between serum PCSK9 levels and disease severity. PCSK9 was measured in serum of 55 controls, 40 patients with moderate and 60 patients with severe COVID-19 disease. Serum PCSK9 was elevated in moderate COVID-19 compared to controls and further increased in severe cases. PCSK9 levels were not associated with C-reactive protein, bacterial superinfections, interventions, or survival in patients with severe COVID-19. PCSK9 regulates circulating cholesterol levels, and 15 cholesteryl ester (CE) species and free cholesterol (FC) were quantified by direct flow injection analysis using a high-resolution hybrid quadrupole-Orbitrap mass spectrometer. Most CE species with shorter fatty acid chains were decreased in severe compared to moderate COVID-19, and none of the CE species were correlated with PCSK9 in patients with severe COVID-19. Levels of all CE species negatively correlated with C-reactive protein in severe COVID-19 patients. Notably, FC was induced in severe compared to moderate COVID-19. The FC/CE ratio correlated positively with inflammatory markers and was associated with non-survival. The current study suggests that the imbalance between CE and FC levels is associated with disease severity and mortality in patients with COVID-19.

6.
Biomedicines ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791005

ABSTRACT

Adiponectin is primarily known for its protective role in metabolic diseases, and it also possesses immunoregulatory properties. Elevated levels of adiponectin have been observed in various inflammatory diseases. However, studies investigating adiponectin levels in the serum of COVID-19 patients have yielded conflicting results. This study aimed to assess serum adiponectin levels in 26 healthy controls, as well as in 64 patients with moderate and 60 patients with severe COVID-19, to determine a potential association between serum adiponectin and the severity of COVID-19. Serum adiponectin levels in severe COVID-19 patients were significantly lower than in those with moderate disease and healthy controls, who exhibited similar serum adiponectin levels. Among patients with moderate disease, positive correlations were observed between serum adiponectin and C-reactive protein levels. Of note, serum adiponectin levels of severe COVID-19 cases were comparable between patients with and without dialysis or vasopressor therapy. Superinfection with bacteria did not exert a notable influence on serum adiponectin levels in patients with severe disease. Patients who were diagnosed with severe COVID-19 and vancomycin-resistant enterococci bacteremia showed a significant reduction in their serum adiponectin levels. An analysis conducted on the entire cohort, including both moderate and severe COVID-19 patients, showed that individuals who did not survive had lower serum adiponectin levels when compared to those who survived. In summary, this study highlights a decrease in serum adiponectin levels in severe COVID-19 cases, indicating the potential utility of adiponectin as an additional biomarker for monitoring disease severity in COVID-19 or critical illnesses in general.

7.
Biomedicines ; 12(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255230

ABSTRACT

Insulin-like growth factor-binding protein (IGFBP)-2 is a regulator of anabolic pathways, which become inactivated in severe illness. Here, we measured the serum IGFBP-2 levels of COVID-19 patients with moderate and severe disease as well as healthy controls to identify the associations of serum IGFBP-2 levels with disease severity. Patients with severe COVID-19 had higher serum IGFBP-2 levels than those with moderate disease and healthy controls, who had similar levels. Non-survivors of COVID-19 tended to have elevated serum IGFBP-2 levels compared to survivors. Increased serum IGFBP-2 levels were observed in patients requiring dialysis and vasopressor therapy. Serum IGFBP-2 was positively correlated with procalcitonin in both patient groups. Bacterial co-infection in severe COVID-19 patients did not influence serum IGFBP-2 levels. Patients with liver cirrhosis and obesity, showing increased and decreased serum IGFBP-2 levels, respectively, were excluded from the study. The present analysis showed that higher serum IGFBP-2 levels are associated with increased disease severity in COVID-19 patients. The similarity in serum IGFBP-2 levels between patients with moderate COVID-19 and healthy controls suggests that elevated IGFBP-2 is associated with critical illness rather than SARS-CoV-2 infection itself.

8.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256273

ABSTRACT

Hepatitis C virus (HCV) infection alters lysophosphatidylcholine (LPC) metabolism, enhancing viral infectivity and replication. Direct-acting antivirals (DAAs) effectively treat HCV and rapidly normalize serum cholesterol. In serum, LPC species are primarily albumin-bound but are also present in lipoprotein particles. This study aims to assess the impact of HCV eradication on serum LPC species levels in patients infected with HCV. Therefore, 12 different LPC species were measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the sera of 178 patients with chronic HCV infections at baseline, and in 176 of these patients after therapy with DAAs. All LPC species increased at 4 and 12 weeks post-initiation of DAA therapy. The serum profiles of the LPC species were similar before and after the viral cure. Patients with HCV and liver cirrhosis exhibited lower serum levels of all LPC species, except LPC 16:1, both before and after DAA treatment. Percentages of LPC 18:1 (relative to the total LPC level) were higher, and % LPC 22:5 and 22:6 were lower in cirrhotic compared to non-cirrhotic patients at baseline and at the end of therapy. LPC species levels inversely correlated with the model of end-stage liver disease score and directly with baseline and post-therapy albumin levels. Receiver operating characteristic curve analysis indicated an area under the curve of 0.773 and 0.720 for % LPC 18:1 (relative to total LPC levels) for classifying fibrosis at baseline and post-therapy, respectively. In summary, HCV elimination was found to increase all LPC species and elevated LPC 18:1 relative to total LPC levels may have pathological significance in HCV-related liver cirrhosis.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Humans , Hepacivirus , Antiviral Agents/therapeutic use , Lysophosphatidylcholines , Tandem Mass Spectrometry , Hepatitis C, Chronic/drug therapy , Hepatitis C/drug therapy , Albumins , Liver Cirrhosis/drug therapy
9.
Mamm Genome ; 35(1): 13-30, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37884762

ABSTRACT

Transforming growth factor beta (Tgfb) is a well-studied pro-fibrotic cytokine, which upregulates cellular communication network factor 2 (Ccn2), collagen, and actin alpha 2, smooth muscle (Acta2) expression. Obesity induces adipose tissue fibrosis, which contributes to metabolic diseases. This work aimed to analyze the expression of Tgfb, Ccn2, collagen1a1 (Col1a1), Acta2 and BMP and activin membrane-bound inhibitor (Bambi), which is a negative regulator of Tgfb signaling, in different adipose tissue depots of mice fed a standard chow, mice fed a high fat diet (HFD) and ob/ob mice. Principally, these genes were low expressed in brown adipose tissues and this difference was less evident for the ob/ob mice. Ccn2 and Bambi protein as well as mRNA expression, and collagen1a1 mRNA were not induced in the adipose tissues upon HFD feeding whereas Tgfb and Acta2 mRNA increased in the white fat depots. Immunoblot analysis showed that Acta2 protein was higher in subcutaneous and perirenal fat of these mice. In the ob/ob mice, Ccn2 mRNA and Ccn2 protein were upregulated in the fat depots. Here, Tgfb, Acta2 and Col1a1 mRNA levels and serum Tgfb protein were increased. Acta2 protein was, however, not higher in subcutaneous and perirenal fat of these mice. Col6a1 mRNA was shown before to be higher in obese fat tissues. Current analysis proved the Col6a1 protein was induced in subcutaneous fat of HFD fed mice. Notably, Col6a1 was reduced in perirenal fat of ob/ob mice in comparison to the respective controls. 3T3-L1 cells express Ccn2 and Bambi protein, whose levels were not changed by fatty acids, leptin, lipopolysaccharide, tumor necrosis factor and interleukin-6. All of these factors led to higher Tgfb in 3T3-L1 adipocyte media but did not increase its mRNA levels. Free fatty acids induced necrosis whereas apoptosis did not occur in any of the in vitro incubations excluding cell death as a main reason for higher Tgfb in cell media. In summary, Tgfb mRNA is consistently induced in white fat tissues in obesity but this is not paralleled by a clear increase of its target genes. Moreover, discrepancies between mRNA and protein expression of Acta2 were observed. Adipocytes seemingly do not contribute to higher Tgfb mRNA levels in obesity. These cells release more Tgfb protein when challenged with obesity-related metabolites connecting metabolic dysfunction and fibrosis.


Subject(s)
Adipose Tissue , Obesity , Mice , Animals , Adipose Tissue/metabolism , Obesity/metabolism , Adipocytes/metabolism , Adipocytes/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transforming Growth Factor beta , Fibrosis , Mice, Inbred C57BL
10.
Lipids Health Dis ; 22(1): 199, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980492

ABSTRACT

BACKGROUND: Disturbed bile acid homeostasis associated with a rise of primary and a decline of secondary bile acids is a consistent finding in inflammatory bowel diseases (IBDs). Whether fecal bile acids may emerge as biomarkers for IBD diagnosis and disease severity is less clear. Our study aimed to identify associations of 18 fecal bile acid species with IBD entity and disease activity. METHODS: Stool samples of 62 IBD patients and 17 controls were collected. Eighteen fecal bile acid species were quantified by LC-MS/MS using stable isotope dilution. Lipid levels normalized to a dry weight of the fecal homogenates and ratios of single bile acid species to total bile acid levels were used for calculations. RESULTS: IBD patients exhibited altered primary and secondary bile acid ratios in stool, with notable distinctions between ulcerative colitis (UC) compared to Crohn's disease (CD) and healthy controls. Fecal calprotectin was negatively correlated with glycolithocholic acid (GLCA) and hyodeoxycholic acid (HDCA) in UC. These bile acids were reduced in stool of UC patients with fecal calprotectin levels > 500 µg/g compared to UC patients with low calprotectin levels. Moreover, negative associations of six secondary bile acids with C-reactive protein (CRP) existed in UC. In CD patients, fecal bile acids did not correlate with CRP or fecal calprotectin. Diarrhoea is common in IBD, and UC patients with diarrhoea had reduced deoxycholic acid (DCA), glycine conjugated DCA (GDCA) and lithocholic acid in stool in contrast to patients with normal stool consistency. Fecal bile acid levels were not associated with diarrhoea in CD patients. UC patients treated with mesalazine had increased levels of fecal GDCA whereas no such changes were observed in CD patients. Bile acid levels of CD and UC patients treated with biologicals or corticosteroids did not change. Relative levels of GHDCA (specificity: 79%, sensitivity: 67%) and glycochenodeoxycholic acid (specificity: 74%, sensitivity: 63%) were the most specific to distinguish UC from CD. CONCLUSION: Disrupted fecal bile acid homeostasis is associated with disease severity and disease symptoms in UC but not in CD, potentially aiding in distinguishing IBD subtypes and classifying the pathophysiology of diarrhoea in UC.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Bile Acids and Salts , Chromatography, Liquid , Tandem Mass Spectrometry , Biomarkers , C-Reactive Protein/metabolism , Diarrhea , Feces/chemistry , Leukocyte L1 Antigen Complex/metabolism
11.
iScience ; 26(9): 107697, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37694136

ABSTRACT

Cholesterol-to-coprostanol conversion by the intestinal microbiota has been suggested to reduce intestinal and serum cholesterol availability, but the relationship between intestinal cholesterol conversion and the gut microbiota, dietary habits, and serum lipids has not been characterized in detail. We measured conserved proportions of cholesterol high and low-converter types in individuals with and without obesity from two distinct, independent low-carbohydrate high-fat (LCHF) dietary intervention studies. Across both cohorts, cholesterol conversion increased in previous low-converters after LCHF diet and was positively correlated with the fecal relative abundance of Eubacterium coprostanoligenes. Lean cholesterol high-converters had increased serum triacylglycerides and decreased HDL-C levels before LCHF diet and responded to the intervention with increased LDL-C, independently of fat, cholesterol, and saturated fatty acid intake. Our findings identify the cholesterol high-converter type as a microbiome marker, which in metabolically healthy lean individuals is associated with increased LDL-C in response to LCHF.

12.
Sci Signal ; 16(787): eade8029, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253089

ABSTRACT

Fibroblast growth factors (FGFs) are key regulators of the remarkable regenerative capacity of the liver. Mice lacking FGF receptors 1 and 2 (Fgfr1 and Fgfr2) in hepatocytes are hypersensitive to cytotoxic injury during liver regeneration. Using these mice as a model for impaired liver regeneration, we identified a critical role for the ubiquitin ligase Uhrf2 in protecting hepatocytes from bile acid accumulation during liver regeneration. During regeneration after partial hepatectomy, Uhrf2 expression increased in an FGFR-dependent manner, and Uhrf2 was more abundant in the nuclei of liver cells in control mice compared with FGFR-deficient mice. Hepatocyte-specific Uhrf2 knockout or nanoparticle-mediated Uhrf2 knockdown caused extensive liver necrosis and impaired hepatocyte proliferation after partial hepatectomy, resulting in liver failure. In cultured hepatocytes, Uhrf2 interacted with several chromatin remodeling proteins and suppressed the expression of cholesterol biosynthesis genes. In vivo, the loss of Uhrf2 resulted in cholesterol and bile acid accumulation in the liver during regeneration. Treatment with a bile acid scavenger rescued the necrotic phenotype, hepatocyte proliferation, and the regenerative capacity of the liver in Uhrf2-deficient mice subjected to partial hepatectomy. Our results identify Uhrf2 as a key target of FGF signaling in hepatocytes and its essential function in liver regeneration and highlight the importance of epigenetic metabolic regulation in this process.


Subject(s)
Liver Regeneration , Ubiquitin-Protein Ligases , Ubiquitin , Animals , Mice , Bile Acids and Salts/metabolism , Cell Proliferation , Hepatocytes/metabolism , Ligases/metabolism , Liver/metabolism , Liver Regeneration/physiology , Mice, Knockout , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
13.
Int J Mol Sci ; 24(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37176109

ABSTRACT

Hepatitis C virus (HCV) replication depends on cellular sphingomyelin (SM), but serum SM composition in chronic HCV infection has been hardly analyzed. In this work, 18 SM species could be quantified in the serum of 178 patients with chronic HCV infection before therapy with direct-acting antivirals (DAAs) and 12 weeks later, when therapy was completed. Six SM species were higher in the serum of females than males before therapy and nine at the end of therapy; thus, sex-specific analysis was performed. Type 2 diabetes was associated with lower serum levels of SM 36:2;O2 and 38:2;O2 in men. Serum SM species did not correlate with the viral load in both sexes. Of note, three SM species were lower in males infected with HCV genotype 3 in comparison to genotype 1 infection. These SM species normalized after viral cure. SM 38:1;O2, 40:1;O2, 41:1;O2, and 42:1;O2 (and, thus, total SM levels) were higher in the serum of both sexes at the end of therapy. In males, SM 39:1;O2 was induced in addition, and higher levels of all of these SM species were already detected at 4 weeks after therapy has been started. Serum lipids are related to liver disease severity, and in females 15 serum SM species were low in patients with liver cirrhosis before initiation of and after treatment with DAAs. The serum SM species did not correlate with the model of end-stage liver disease (MELD) score in the cirrhosis and the non-cirrhosis subgroups in females. In HCV-infected male patients, nine SM species were lower in the serum of patients with cirrhosis before DAA treatment and eleven at the end of the study. Most of the SM species showed strong negative correlations with the MELD score in the male cirrhosis patients before DAA treatment and at the end of therapy. Associations of SM species with the MELD score were not detected in the non-cirrhosis male subgroup. In summary, the current analysis identified sex-specific differences in the serum levels of SM species in HCV infection, in liver cirrhosis, and during DAA therapy. Correlations of SM species with the MELD score in male but not in female patients indicate a much closer association between SM metabolism and liver function in male patients.


Subject(s)
Diabetes Mellitus, Type 2 , End Stage Liver Disease , Hepatitis C, Chronic , Hepatitis C , Humans , Male , Female , Hepacivirus/genetics , Antiviral Agents , Sphingomyelins , Hepatitis C, Chronic/complications , Diabetes Mellitus, Type 2/drug therapy , Hepatitis C/drug therapy , Hepatitis C/complications , Liver Cirrhosis/drug therapy
14.
Gene ; 859: 147209, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36681100

ABSTRACT

Visceral adiposity is strongly associated with liver steatosis, which predisposes to the development of non-alcoholic steatohepatitis (NASH). Mice with loss of the molecular adapter protein beta-2 syntrophin (SNTB2) have greatly reduced intra-abdominal fat mass. Hepatic expression of proteins with a role in fatty acid metabolism such as fatty acid synthase was nevertheless normal. This was also the case for proteins regulating cholesterol synthesis and uptake. Yet, a slight induction of hepatic cholesterol was noticed in the mutant mice. When mice were fed a methionine choline deficient (MCD) diet to induce NASH, liver cholesteryl ester content was induced in the wild type but not the mutant mice. Serum cholesterol of the mice fed a MCD diet declined and this was significant for the SNTB2 null mice. Though the mutant mice lost less fat mass than the wild type animals, hepatic triglyceride levels were similar between the groups. Proteins involved in fatty acid or cholesterol metabolism such as fatty acid synthase, apolipoprotein E and low-density lipoprotein receptor did not differ between the genotypes. Hepatic oxidative stress and liver inflammation of mutant and wild type mice were comparable. Mutant mice had lower hepatic levels of secondary bile acids and higher cholesterol storage in epididymal fat, and this may partly prevent hepatic cholesterol deposition. In summary, the current study shows that SNTB2 null mice have low intra-abdominal fat mass and do not accumulate hepatic cholesteryl esters when fed a MCD diet. Nevertheless, the SNTB2 null mice develop a similar NASH pathology as wild type mice suggesting a minor role of intra-abdominal fat and liver cholesteryl esters in this model.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Adiposity , Cholesterol Esters/metabolism , Liver/metabolism , Inflammation/metabolism , Obesity/metabolism , Mice, Knockout , Fatty Acids/metabolism , Choline/metabolism , Methionine , Fatty Acid Synthases , Mice, Inbred C57BL , Disease Models, Animal
15.
Biomedicines ; 10(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36551908

ABSTRACT

Background: Infection with hepatitis C virus (HCV) lowers serum cholesterol levels, which rapidly recover during therapy with direct-acting antivirals (DAAs). Serum cholesterol is also reduced in patients with liver cirrhosis. Studies investigating serum cholesterol in patients with chronic liver diseases are generally based on enzymatic assays providing total cholesterol levels. Hence, these studies do not account for the individual cholesteryl ester (CE) species, which have different properties according to acyl chain length and desaturation. Methods: Free cholesterol (FC) and 15 CE species were quantified by flow injection analysis high-resolution Fourier Transform mass spectrometry (FIA-FTMS) in the serum of 178 patients with chronic HCV before therapy and during treatment with DAAs. Results: Serum CEs were low in HCV patients with liver cirrhosis and, compared to patients without cirrhosis, proportions of CE 16:0 and 16:1 were higher whereas % CE 20:4 and 20:5 were reduced. FC levels were unchanged, and the CE/FC ratio was consequently low in cirrhosis. FC and CEs did not correlate with viral load. Four CE species were reduced in genotype 3 compared to genotype 1-infected patients. During DAA therapy, 9 of the 15 measured CE species, and the CE/FC ratio, increased. Relative to total CE levels, % CE 16:0 declined and % CE 18:3 was higher at therapy end. At this time, % CE 14:0, 16:0 and 16:1 were higher and % CE 20:4 and 22:6 were lower in the cirrhosis than the non-cirrhosis patients. Viral genotype associated changes of CEs disappeared at therapy end. Conclusions: The serum CE composition differs between patients with and without liver cirrhosis, and changes through the efficient elimination of HCV. Overall, HCV infection and cirrhosis are associated with a higher proportion of CE species with a lower number of carbon atoms and double bonds, reflecting a less-favorable CE profile.

16.
BMC Med ; 20(1): 500, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575453

ABSTRACT

BACKGROUND: Obesity and related co-morbidities represent a major health challenge nowadays, with a rapidly increasing incidence worldwide. The gut microbiome has recently emerged as a key modifier of human health that can affect the development and progression of obesity, largely due to its involvement in the regulation of food intake and metabolism. However, there are still few studies that have in-depth explored the functionality of the human gut microbiome in obesity and even fewer that have examined its relationship to eating behaviors. METHODS: In an attempt to advance our knowledge of the gut-microbiome-brain axis in the obese phenotype, we thoroughly characterized the gut microbiome signatures of obesity in a well-phenotyped Italian female cohort from the NeuroFAST and MyNewGut EU FP7 projects. Fecal samples were collected from 63 overweight/obese and 37 normal-weight women and analyzed via a multi-omics approach combining 16S rRNA amplicon sequencing, metagenomics, metatranscriptomics, and lipidomics. Associations with anthropometric, clinical, biochemical, and nutritional data were then sought, with particular attention to cognitive and behavioral domains of eating. RESULTS: We identified four compositional clusters of the gut microbiome in our cohort that, although not distinctly associated with weight status, correlated differently with eating habits and behaviors. These clusters also differed in functional features, i.e., transcriptional activity and fecal metabolites. In particular, obese women with uncontrolled eating behavior were mostly characterized by low-diversity microbial steady states, with few and poorly interconnected species (e.g., Ruminococcus torques and Bifidobacterium spp.), which exhibited low transcriptional activity, especially of genes involved in secondary bile acid biosynthesis and neuroendocrine signaling (i.e., production of neurotransmitters, indoles and ligands for cannabinoid receptors). Consistently, high amounts of primary bile acids as well as sterols were found in their feces. CONCLUSIONS: By finding peculiar gut microbiome profiles associated with eating patterns, we laid the foundation for elucidating gut-brain axis communication in the obese phenotype. Subject to confirmation of the hypotheses herein generated, our work could help guide the design of microbiome-based precision interventions, aimed at rewiring microbial networks to support a healthy diet-microbiome-gut-brain axis, thus counteracting obesity and related complications.


Subject(s)
Gastrointestinal Microbiome , Humans , Female , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Multiomics , Obesity/genetics , Diet , Feeding Behavior/physiology , Feces/microbiology
17.
Lipids Health Dis ; 21(1): 106, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36280840

ABSTRACT

BACKGROUND: Hepatitis C virus (HCV) infection is associated with serum lipid abnormalities, which partly normalize following direct-acting antiviral (DAA) therapy. Here, associations of serum triglycerides (TGs) with viral genotype and markers of liver disease severity were evaluated in patients with chronic HCV.  METHODS: The study included the serum of 177 patients with chronic HCV. TGs were quantified by flow injection analysis Fourier transform mass spectrometry. Laboratory values and noninvasive scores for liver fibrosis assessment were determined. The nonparametric Kruskal‒Wallis test, one-way ANOVA, multiple linear regression and Student's t test were used as appropriate. P values were adjusted for multiple comparisons. RESULTS: HCV-infected women had lower serum TGs than men, and thus, a sex-specific analysis was performed. None of the 46 TG species analyzed differed in the serum of female patients with and without liver cirrhosis. In contrast, in the serum of male patients with liver cirrhosis, TGs with 53, 56 and 58 carbon atoms and three to eight double bonds were diminished. These polyunsaturated TGs were also low in males with a high fibrosis-4 score. TGs with 7 or 8 double bonds negatively correlated with the model of end-stage liver disease score in males. In addition, TGs with 49, 51 and 53 carbon atoms were reduced in male patients infected with genotype 3a in comparison to genotype 1a. TGs with 56 carbon atoms were lower in genotype 3a-infected males than in genotype 1b-infected males. TGs did not differ in females by genotype. Genotype 3-related changes disappeared at the end of therapy with DAAs. Overall, the levels of serum TGs did not change during DAA therapy in either sex. Consequently, the serum TGs of males with liver cirrhosis were lower than those of males without cirrhosis at the end of therapy. Such a difference was not apparent in females. CONCLUSIONS: The decline in TGs observed only in male patients with liver cirrhosis and male patients infected with genotype 3 illustrates sex-specific changes in lipid metabolism in chronic HCV.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Female , Humans , Male , Hepacivirus/genetics , Antiviral Agents/therapeutic use , Hepatitis C, Chronic/drug therapy , Triglycerides , Liver Cirrhosis/complications , Carbon/therapeutic use
18.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077197

ABSTRACT

Hepatitis C virus (HCV) infection affects ceramide metabolism, and, here, we have evaluated associations of eight serum ceramide species with viral load, viral genotype, and disease markers in 178 patients with chronic HCV. In this cohort, ceramide d18:1;O2/16:0 was higher in the serum of the 20 diabetic patients compared to the patients without this complication. Moreover, ceramide d18:1;O2/24:0 was negatively correlated with age. Of note, all but ceramide d18:1;O2/16:0 and 26:0 were diminished in the serum of patients with liver cirrhosis and, with the exception of ceramide d18:1;O2/16:0, were negatively correlated with the model for end-stage liver disease (MELD) score. Most of the serum ceramides are carried in low-density lipoprotein (LDL), which rises following effective direct-acting antiviral (DAA) therapy. Ceramide d18:1;O2/24:0 recovered in parallel with LDL, whereas ceramide d18:1;O2/18:0 declined. Genotype-3-infected patients had the lowest ceramide levels, which were comparable to other genotypes after DAA treatment. Notably, ceramide d18:1;O2/23:0 and 24:0 were negatively correlated with the MELD score in patients with liver cirrhosis at the end of DAA therapy. Long-chain (LC) ceramides show adverse effects, whereas very-long-chain (VL) species have protective functions in the liver. The ratio of VL/LC ceramides was higher in non-cirrhosis patients than cirrhosis patients and further increased at the end of therapy in this subgroup. In summary, our study shows that serum ceramide levels are related to liver cirrhosis and viral genotype. Whether the more favorable serum ceramide profile in non-cirrhosis patients, before and after DAA therapy, is of pathophysiological importance needs further investigation.


Subject(s)
End Stage Liver Disease , Hepatitis C, Chronic , Antiviral Agents/therapeutic use , Ceramides , End Stage Liver Disease/complications , Genotype , Hepacivirus/genetics , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Humans , Liver Cirrhosis/etiology , Severity of Illness Index
19.
Mol Cell Biochem ; 477(8): 2059-2071, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35449483

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a rapidly growing liver disease. The chemoattractant chemerin is abundant in hepatocytes, and hepatocyte expressed prochemerin protected from NASH. Prochemerin is inactive and different active isoforms have been described. Here, the effect of hepatocyte expressed muChem-156, a highly active murine chemerin isoform, was studied in the methionine-choline deficient dietary model of NASH. Mice overexpressing muChem-156 had higher hepatic chemerin protein. Serum chemerin levels and the capability of serum to activate the chemerin receptors was unchanged showing that the liver did not release active chemerin. Notably, activation of the chemerin receptors by hepatic vein blood did not increase in parallel to total chemerin protein in patients with liver cirrhosis. In experimental NASH, muChem-156 had no effect on liver lipids. Accordingly, overexpression of active chemerin in hepatocytes or treatment of hepatocytes with recombinant chemerin did not affect cellular triglyceride and cholesterol levels. Importantly, overexpression of muChem-156 in the murine liver did not change the hepatic expression of inflammatory and profibrotic genes. The downstream targets of chemerin such as p38 kinase were neither activated in the liver of muChem-156 producing mice nor in HepG2, Huh7 and Hepa1-6 cells overexpressing this isoform. Recombinant chemerin had no effect on global gene expression of primary human hepatocytes and hepatic stellate cells within 24 h of incubation. Phosphorylation of p38 kinase was, however, increased upon short-time incubation of HepG2 cells with chemerin. These findings show that muChem-156 overexpression in hepatocytes does not protect from liver steatosis and inflammation.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Chemokines , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Protein Isoforms/metabolism
20.
J Cell Sci ; 135(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35293576

ABSTRACT

Vertebrate lonesome kinase (VLK) is the only known extracellular tyrosine kinase, but its physiological functions are largely unknown. We show that VLK is highly expressed in hepatocytes of neonatal mice, but downregulated during adulthood. To determine the role of VLK in liver homeostasis and regeneration, we generated mice with a hepatocyte-specific knockout of the VLK gene (Pkdcc). Cultured progenitor cells established from primary hepatocytes of Pkdcc knockout mice produced a secretome, which promoted their own proliferation in 3D spheroids and proliferation of cultured fibroblasts. In vivo, Pkdcc knockout mice developed liver steatosis with signs of inflammation and perivascular fibrosis upon aging, combined with expansion of liver progenitor cells. In response to chronic CCl4-induced liver injury, the pattern of deposited collagen was significantly altered in these mice. The liver injury marker alpha-fetoprotein (AFP) was increased in the secretome of VLK-deficient cultured progenitor cells and in liver tissues of aged or CCl4-treated knockout mice. These results support a key role for VLK and extracellular protein phosphorylation in liver homeostasis and repair through paracrine control of liver cell function and regulation of appropriate collagen deposition. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Hepatocytes , Secretome , Adult , Aged , Animals , Collagen/metabolism , Hepatocytes/metabolism , Humans , Inflammation/metabolism , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Mice , Mice, Knockout , Protein-Tyrosine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL