Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
1.
Front Cell Infect Microbiol ; 14: 1383917, 2024.
Article in English | MEDLINE | ID: mdl-39119292

ABSTRACT

Introduction: Oxysterol-binding protein (OSBP) is known for its crucial role in lipid transport, facilitating cholesterol exchange between the Golgi apparatus and endoplasmic reticulum membranes. Despite its established function in cellular processes, its involvement in coronavirus replication remains unclear. Methods: In this study, we investigated the role of OSBP in coronavirus replication and explored the potential of a novel OSBP-binding compound, ZJ-1, as an antiviral agent against coronaviruses, including SARS-CoV-2. We utilized a combination of biochemical and cellular assays to elucidate the interactions between OSBP and SARS-CoV-2 non-structural proteins (Nsps) and other viral proteins. Results: Our findings demonstrate that OSBP positively regulates coronavirus replication. Moreover, treatment with ZJ-1 resulted in reduced OSBP levels and exhibited potent antiviral effects against multiple coronaviruses. Through our investigation, we identified specific interactions between OSBP and SARS-CoV-2 Nsps, particularly Nsp3, Nsp4, and Nsp6, which are involved in double-membrane vesicle formation-a crucial step in viral replication. Additionally, we observed that Nsp3 a.a.1-1363, Nsp4, and Nsp6 target vesicle-associated membrane protein (VAMP)-associated protein B (VAP-B), which anchors OSBP to the ER membrane. Interestingly, the interaction between OSBP and VAP-B is disrupted by Nsp3 a.a.1-1363 and partially impaired by Nsp6. Furthermore, we identified SARS-CoV-2 orf7a, orf7b, and orf3a as additional OSBP targets, with OSBP contributing to their stabilization. Conclusion: Our study highlights the significance of OSBP in coronavirus replication and identifies it as a promising target for the development of antiviral therapies against SARS-CoV-2 and other coronaviruses. These findings underscore the potential of OSBP-targeted interventions in combating coronavirus infections.


Subject(s)
Antiviral Agents , Receptors, Steroid , SARS-CoV-2 , Viral Nonstructural Proteins , Virus Replication , Virus Replication/drug effects , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Antiviral Agents/pharmacology , Receptors, Steroid/metabolism , Viral Nonstructural Proteins/metabolism , COVID-19/virology , COVID-19/metabolism , Chlorocebus aethiops , Vero Cells , Viral Proteins/metabolism , HEK293 Cells , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Viroporin Proteins/metabolism , Coronavirus Papain-Like Proteases/metabolism , Protein Binding
2.
Nat Commun ; 15(1): 6438, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085210

ABSTRACT

Innate immune responses are linked to key metabolic pathways, yet the proximal signaling events that connect these systems remain poorly understood. Here we show that phosphofructokinase 1, liver type (PFKL), a rate-limiting enzyme of glycolysis, is phosphorylated at Ser775 in macrophages following several innate stimuli. This phosphorylation increases the catalytic activity of PFKL, as shown by biochemical assays and glycolysis monitoring in cells expressing phosphorylation-defective PFKL variants. Using a genetic mouse model in which PFKL Ser775 phosphorylation cannot take place, we observe that upon activation, glycolysis in macrophages is lower than in the same cell population of wild-type animals. Consistent with their higher glycolytic activity, wild-type cells have higher levels of HIF1α and IL-1ß than PfklS775A/S775A after LPS treatment. In an in vivo inflammation model, PfklS775A/S775A mice show reduced levels of MCP-1 and IL-1ß. Our study thus identifies a molecular link between innate immune activation and early induction of glycolysis.


Subject(s)
Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Immunity, Innate , Interleukin-1beta , Macrophages , Animals , Macrophages/metabolism , Macrophages/immunology , Mice , Phosphorylation , Interleukin-1beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Receptors, Pattern Recognition/metabolism , Receptors, Pattern Recognition/genetics , Phosphofructokinase-1/metabolism , Phosphofructokinase-1/genetics , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Humans , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Inflammation/metabolism , Male , Metabolic Reprogramming
3.
Blood ; 141(9): 1023-1035, 2023 03 02.
Article in English | MEDLINE | ID: mdl-35981498

ABSTRACT

Fms-like tyrosine kinase 3 (FLT3) is often overexpressed or constitutively activated by internal tandem duplication (ITD) and tyrosine kinase domain (TKD) mutations in acute myeloid leukemia (AML). Despite the use of receptor tyrosine kinase inhibitors (TKI) in FLT3-ITD-positive AML, the prognosis of patients is still poor, and further improvement of therapy is required. Targeting FLT3 independent of mutations by antibody-drug conjugates (ADCs) is a promising strategy for AML therapy. Here, we report the development and preclinical characterization of a novel FLT3-targeting ADC, 20D9-ADC, which was generated by applying the innovative P5 conjugation technology. In vitro, 20D9-ADC mediated potent cytotoxicity to Ba/F3 cells expressing transgenic FLT3 or FLT3-ITD, to AML cell lines, and to FLT3-ITD-positive patient-derived xenograft AML cells. In vivo, 20D9-ADC treatment led to a significant tumor reduction and even durable complete remission in AML xenograft models. Furthermore, 20D9-ADC demonstrated no severe hematotoxicity in in vitro colony formation assays using concentrations that were cytotoxic in AML cell line treatment. The combination of 20D9-ADC with the TKI midostaurin showed strong synergy in vitro and in vivo, leading to reduction of aggressive AML cells below the detection limit. Our data indicate that targeting FLT3 with an advanced new-generation ADC is a promising and potent antileukemic strategy, especially when combined with FLT3-TKI in FLT3-ITD-positive AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , fms-Like Tyrosine Kinase 3/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation
4.
Sci Rep ; 11(1): 13333, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172766

ABSTRACT

Cilia are protrusions of the cell surface and composed of hundreds of proteins many of which are evolutionary and functionally well conserved. In cells assembling motile cilia the expression of numerous ciliary components is under the control of the transcription factor FOXJ1. Here, we analyse the evolutionary conserved FOXJ1 target CFAP161 in Xenopus and mouse. In both species Cfap161 expression correlates with the presence of motile cilia and depends on FOXJ1. Tagged CFAP161 localises to the basal bodies of multiciliated cells of the Xenopus larval epidermis, and in mice CFAP161 protein localises to the axoneme. Surprisingly, disruption of the Cfap161 gene in both species did not lead to motile cilia-related phenotypes, which contrasts with the conserved expression in cells carrying motile cilia and high sequence conservation. In mice mutation of Cfap161 stabilised the mutant mRNA making genetic compensation triggered by mRNA decay unlikely. However, genes related to microtubules and cilia, microtubule motor activity and inner dyneins were dysregulated, which might buffer the Cfap161 mutation.


Subject(s)
Cilia/metabolism , Forkhead Transcription Factors/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/metabolism , Animals , Axoneme/metabolism , Basal Bodies/metabolism , Epidermal Cells/metabolism , Epidermis/metabolism , Female , Male , Mice , Microtubules/metabolism
5.
EMBO J ; 40(13): e106777, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33999432

ABSTRACT

The p14ARF protein is a well-known regulator of p53-dependent and p53-independent tumor-suppressive activities. In unstressed cells, p14ARF is predominantly sequestered in the nucleoli, bound to its nucleolar interaction partner NPM. Upon genotoxic stress, p14ARF undergoes an immediate redistribution to the nucleo- and cytoplasm, where it promotes activation of cell cycle arrest and apoptosis. Here, we identify p14ARF as a novel interaction partner and substrate of PRMT1 (protein arginine methyltransferase 1). PRMT1 methylates several arginine residues in the C-terminal nuclear/nucleolar localization sequence (NLS/NoLS) of p14ARF . In the absence of cellular stress, these arginines are crucial for nucleolar localization of p14ARF . Genotoxic stress causes augmented interaction between PRMT1 and p14ARF , accompanied by arginine methylation of p14ARF . PRMT1-dependent NLS/NoLS methylation promotes the release of p14ARF from NPM and nucleolar sequestration, subsequently leading to p53-independent apoptosis. This PRMT1-p14ARF cooperation is cancer-relevant and indicative for PDAC (pancreatic ductal adenocarcinoma) prognosis and chemotherapy response of pancreatic tumor cells. Our data reveal that PRMT1-mediated arginine methylation is an important trigger for p14ARF 's stress-induced tumor-suppressive function.


Subject(s)
Pancreatic Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Protein p14ARF/metabolism , Animals , Apoptosis/physiology , Cell Cycle/physiology , Cell Line , Cell Line, Tumor , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Humans , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Sf9 Cells , Tumor Suppressor Protein p53/metabolism , Pancreatic Neoplasms
6.
Elife ; 102021 03 08.
Article in English | MEDLINE | ID: mdl-33683199

ABSTRACT

Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing, and fork directionality profiles obtained by RNA-seq, Repli-seq, and OK-seq. Both, the origin recognition complex (ORC) and the minichromosome maintenance complex (MCM) are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating regions, and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late-replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.


Subject(s)
DNA Replication/genetics , Minichromosome Maintenance Proteins/genetics , Models, Genetic , Origin Recognition Complex/genetics , Cell Line, Tumor , Humans , Minichromosome Maintenance Proteins/metabolism , Origin Recognition Complex/metabolism
7.
Cell Mol Gastroenterol Hepatol ; 11(4): 1071-1094, 2021.
Article in English | MEDLINE | ID: mdl-33188943

ABSTRACT

BACKGROUND & AIMS: RING finger protein 43 (RNF43) is a tumor suppressor that frequently is mutated in gastric tumors. The link between RNF43 and modulation of Wingless-related integration site (WNT) signaling has not been shown clearly in the stomach. Because mutations in RNF43 are highly enriched in microsatellite-unstable gastric tumors, which show defects in DNA damage response (DDR), we investigated whether RNF43 is involved in DDR in the stomach. METHODS: DDR activation and cell viability upon γ-radiation was analyzed in gastric cells where expression of RNF43 was depleted. Response to chemotherapeutic agents 5-fluorouracil and cisplatin was analyzed in gastric cancer cell lines and xenograft tumors. In addition, involvement of RNF43 in DDR activation was analyzed upon Helicobacter pylori infection in wild-type and Rnf43ΔEx8 mice. Furthermore, a cohort of human gastric biopsy specimens was analyzed for RNF43 expression and mutation status as well as for activation of DDR. RESULTS: RNF43 depletion conferred resistance to γ-radiation and chemotherapy by dampening the activation of DDR, thereby preventing apoptosis in gastric cells. Upon Helicobacter pylori infection, RNF43 loss of function reduced activation of DDR and apoptosis. Furthermore, RNF43 expression correlated with DDR activation in human gastric biopsy specimens, and RNF43 mutations found in gastric tumors conferred resistance to DNA damage. When exploring the molecular mechanisms behind these findings, a direct interaction between RNF43 and phosphorylated H2A histone family member X (γH2AX) was observed. CONCLUSIONS: We identified a novel function for RNF43 in the stomach as a regulator of DDR. Loss of RNF43 function in gastric cells confers resistance to DNA damage-inducing radiotherapy and chemotherapy, suggesting RNF43 as a possible biomarker for therapy selection.


Subject(s)
Carcinogenesis/pathology , DNA Damage , Gastritis/pathology , Helicobacter Infections/complications , Stomach Neoplasms/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/physiology , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Carcinogenesis/metabolism , Case-Control Studies , Cell Proliferation , Female , Gastritis/etiology , Gastritis/metabolism , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Stomach Neoplasms/etiology , Stomach Neoplasms/metabolism , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/genetics , Wnt Signaling Pathway , Xenograft Model Antitumor Assays
8.
Development ; 147(21)2020 06 15.
Article in English | MEDLINE | ID: mdl-32376681

ABSTRACT

Cilia are complex cellular protrusions consisting of hundreds of proteins. Defects in ciliary structure and function, many of which have not been characterised molecularly, cause ciliopathies: a heterogeneous group of human syndromes. Here, we report on the FOXJ1 target gene Cfap206, orthologues of which so far have only been studied in Chlamydomonas and Tetrahymena In mouse and Xenopus, Cfap206 was co-expressed with and dependent on Foxj1 CFAP206 protein localised to the basal body and to the axoneme of motile cilia. In Xenopus crispant larvae, the ciliary beat frequency of skin multiciliated cells was enhanced and bead transport across the epidermal mucociliary epithelium was reduced. Likewise, Cfap206 knockout mice revealed ciliary phenotypes. Electron tomography of immotile knockout mouse sperm flagella indicated a role in radial spoke formation reminiscent of FAP206 function in Tetrahymena Male infertility, hydrocephalus and impaired mucociliary clearance of the airways in the absence of laterality defects in Cfap206 mutant mice suggests that Cfap206 may represent a candidate for the subgroup of human primary ciliary dyskinesias caused by radial spoke defects.


Subject(s)
Brain/embryology , Brain/metabolism , Cytoskeletal Proteins/metabolism , Forkhead Transcription Factors/metabolism , Lung/metabolism , Mucociliary Clearance , Sperm Motility , Animals , Axoneme/metabolism , Basal Bodies/metabolism , Cilia/metabolism , Cytoskeletal Proteins/chemistry , Embryonic Development , Epithelial Cells/metabolism , Fluorescence , Hydrocephalus/pathology , Infertility, Male/pathology , Male , Mice, Knockout , Mucus/metabolism , Mutation/genetics , Protein Transport , Spermatozoa/metabolism , Spermatozoa/ultrastructure , Xenopus laevis/embryology , Xenopus laevis/metabolism
9.
Dev Biol ; 459(2): 109-125, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31884020

ABSTRACT

Malfunctions of motile cilia cause a variety of developmental defects and diseases in humans and animal model organisms. Defects include impaired mucociliary clearance of the airways, sperm immotility, hydrocephalus and organ laterality. Here, we characterize the evolutionary conserved Cfap43 gene by loss-of-function experiments in the mouse and the frog Xenopus laevis. Cfap43 is expressed in tissues carrying motile cilia and acts as a target gene of the transcription factor FOXJ1, which is essential for the induction of motile ciliogenesis. We show that CFAP43, a protein of unknown biochemical function, localizes to the ciliary axoneme. CFAP43 is involved in the regulation of the beating frequency of tracheal cilia and loss of CFAP43 causes severe mucus accumulation in the nasal cavity. Likewise, morphant and crispant frog embryos revealed impaired function of motile cilia of the larval epidermis, a model for airway mucociliary epithelia. CFAP43 participates in the formation of flagellar axonemes during spermatogenesis as mice mutant for Cfap43 display male infertility, consistent with observations in male sterile patients. In addition, mice mutant for Cfap43 display early onset hydrocephalus. Together, these results confirm the role of CFAP43 in the male reproductive tract and pinpoint additional functions in airway epithelia mucus clearance and brain development.


Subject(s)
Cilia/metabolism , Cytoskeletal Proteins/metabolism , Xenopus Proteins/metabolism , Animals , Cytoskeletal Proteins/genetics , Epidermal Cells/metabolism , Forkhead Transcription Factors/metabolism , Hydrocephalus/genetics , Infertility, Male/genetics , Male , Mice , Mice, Knockout , Sperm Tail/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Trachea/cytology , Xenopus Proteins/genetics , Xenopus laevis
10.
Int J Cancer ; 146(5): 1396-1408, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31525266

ABSTRACT

Chitinase-like proteins (CLP) are chitin-binding proteins that lack chitin hydrolyzing activity, but possess cytokine-like and growth factor-like properties, and play crucial role in intercellular crosstalk. Both human and mice express two members of CLP family: YKL-40 and stabilin-1 interacting chitinase-like protein (SI-CLP). Despite numerous reports indicating the role of YKL-40 in the support of angiogenesis, tumor cell proliferation, invasion and metastasis, the role of its structurally related protein SI-CLP in cancer was not reported. Using gain-of-function approach, we demonstrate in the current study that the expression of recombinant SI-CLP in mouse TS/A mammary adenocarcinoma cells results in significant and persistent inhibition of in vivo tumor growth. Using quantitative immunohistochemistry, we show that on the cellular level this phenomenon is associated with reduced infiltration of tumor-associated macrophages (TAMs), CD4+ and FoxP3+ cells in SI-CLP expressing tumors. Gene expression analysis in TAM isolated from SI-CLP-expressing and control tumors demonstrated that SI-CLP does not affect macrophage phenotype. However, SI-CLP significantly inhibited migration of murine bone-marrow derived macrophages and human primary monocytes toward monocyte-recruiting chemokine CCL2 produced in the tumor microenvironment (TME). Mechanistically, SI-CLP did not affect CCL2/CCR2 interaction, but suppressed cytoskeletal rearrangements in response to CCL2. Altogether, our data indicate that SI-CLP functions as a tumor growth inhibitor in mouse breast cancer by altering cellular composition of TME and blocking cytokine-induced TAM recruitment. Taking into consideration weak to absent expression of SI-CLP in human breast cancer, it can be considered as a therapeutic protein to block TAM-mediated support of breast tumor growth.


Subject(s)
Calcium-Binding Proteins/immunology , Carrier Proteins/immunology , Macrophages/immunology , Mammary Neoplasms, Experimental/immunology , Animals , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Growth Processes/immunology , Cell Movement/immunology , Female , HEK293 Cells , Humans , Macrophage Activation , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Middle Aged
11.
Sci Rep ; 9(1): 19221, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31822784

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Nucleic Acids Res ; 47(14): 7444-7459, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31147711

ABSTRACT

Preblastoderm Drosophila embryo development is characterized by fast cycles of nuclear divisions. Extracts from these embryos can be used to reconstitute complex chromatin with high efficiency. We now discovered that this chromatin assembly system contains activities that recognize unprotected DNA ends and signal DNA damage through phosphorylation. DNA ends are initially bound by Ku and MRN complexes. Within minutes, the phosphorylation of H2A.V (homologous to γH2A.X) initiates from DNA breaks and spreads over tens of thousands DNA base pairs. The γH2A.V phosphorylation remains tightly associated with the damaged DNA and does not spread to undamaged DNA in the same reaction. This first observation of long-range γH2A.X spreading along damaged chromatin in an in vitro system provides a unique opportunity for mechanistic dissection. Upon further incubation, DNA ends are rendered single-stranded and bound by the RPA complex. Phosphoproteome analyses reveal damage-dependent phosphorylation of numerous DNA-end-associated proteins including Ku70, RPA2, CHRAC16, the exonuclease Rrp1 and the telomer capping complex. Phosphorylation of spindle assembly checkpoint components and of microtubule-associated proteins required for centrosome integrity suggests this cell-free system recapitulates processes involved in the regulated elimination of fatally damaged syncytial nuclei.


Subject(s)
Cell-Free System/metabolism , DNA Breaks , Drosophila/genetics , Signal Transduction , Animals , Cell Line , Chromatin/genetics , Chromatin/metabolism , DNA Repair , Drosophila/cytology , Drosophila/embryology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Histones/genetics , Histones/metabolism , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Phosphorylation , Proteome/genetics , Proteome/metabolism , Proteomics/methods
13.
PLoS Pathog ; 15(5): e1007743, 2019 05.
Article in English | MEDLINE | ID: mdl-31059555

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) belongs to the subfamily of Gammaherpesvirinae and is the etiological agent of Kaposi's sarcoma as well as of two lymphoproliferative diseases: primary effusion lymphoma and multicentric Castleman disease. The KSHV life cycle is divided into a latent and a lytic phase and is highly regulated by viral immunomodulatory proteins which control the host antiviral immune response. Among them is a group of proteins with homology to cellular interferon regulatory factors, the viral interferon regulatory factors 1-4. The KSHV vIRFs are known as inhibitors of cellular interferon signaling and are involved in different oncogenic pathways. Here we characterized the role of the second vIRF protein, vIRF2, during the KSHV life cycle. We found the vIRF2 protein to be expressed in different KSHV positive cells with early lytic kinetics. Importantly, we observed that vIRF2 suppresses the expression of viral early lytic genes in both newly infected and reactivated persistently infected endothelial cells. This vIRF2-dependent regulation of the KSHV life cycle might involve the increased expression of cellular interferon-induced genes such as the IFIT proteins 1, 2 and 3, which antagonize the expression of early KSHV lytic proteins. Our findings suggest a model in which the viral protein vIRF2 allows KSHV to harness an IFN-dependent pathway to regulate KSHV early gene expression.


Subject(s)
Endothelium, Vascular/virology , Gene Expression Regulation, Viral , Herpesvirus 8, Human/physiology , Immediate-Early Proteins/metabolism , Interferon Regulatory Factors/metabolism , Interferons/metabolism , Sarcoma, Kaposi/virology , Viral Proteins/metabolism , Virus Activation , Cells, Cultured , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Humans , Immediate-Early Proteins/genetics , Interferon Regulatory Factors/genetics , Interferons/genetics , Sarcoma, Kaposi/genetics , Sarcoma, Kaposi/metabolism , Viral Proteins/genetics , Virus Latency
14.
Stem Cell Reports ; 12(5): 861-868, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31006630

ABSTRACT

The neural crest (NC) gives rise to a multitude of fetal tissues, and its misregulation is implicated in congenital malformations. Here, we investigated molecular mechanisms pertaining to NC-related symptoms in Bohring-Opitz syndrome (BOS), a developmental disorder linked to mutations in the Polycomb group factor Additional sex combs-like 1 (ASXL1). Genetically edited human pluripotent stem cell lines that were differentiated to NC progenitors and then xenotransplanted into chicken embryos demonstrated an impairment of NC delamination and emigration. Molecular analysis showed that ASXL1 mutations correlated with reduced activation of the transcription factor ZIC1 and the NC gene regulatory network. These findings were supported by differentiation experiments using BOS patient-derived induced pluripotent stem cell lines. Expression of truncated ASXL1 isoforms (amino acids 1-900) recapitulated the NC phenotypes in vitro and in ovo, raising the possibility that truncated ASXL1 variants contribute to BOS pathology. Collectively, we expand the understanding of truncated ASXL1 in BOS and in the human NC.


Subject(s)
Cell Differentiation/genetics , Craniosynostoses/genetics , Gene Expression Profiling/methods , Intellectual Disability/genetics , Mutation , Neural Crest/metabolism , Pluripotent Stem Cells/metabolism , Repressor Proteins/genetics , Animals , Cell Line , Cells, Cultured , Chick Embryo , Craniosynostoses/metabolism , Craniosynostoses/pathology , Gene Regulatory Networks , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/metabolism , Intellectual Disability/pathology , Neural Crest/cytology , Pluripotent Stem Cells/cytology , Repressor Proteins/metabolism , Transplantation, Heterologous
15.
Sci Rep ; 9(1): 526, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679523

ABSTRACT

The determination of unique functions of GABARAP (gamma-aminobutyric acid type A receptor-associated protein), a member of the highly conserved protein family of mammalian autophagy-related 8 protein (mATG8), within diverse cellular processes remains challenging. Because available anti-GABARAP antibodies perform inadequate, especially within various microscopy-based applications, we aimed to develop an antibody that targets GABARAP but not its close orthologs. Following the latest recommendations for antibody validation including fluorescence protein tagging, genetic and orthogonal strategies, we characterized the resulting anti-GABARAP (8H5) antibody during confocal immunofluorescence imaging in-depth. We compared the antibody staining pattern with that obtained for fluorescence protein tagged GABARAP, GABARAPL1 or GABARAPL2 each ectopically expressed in GABARAP knockout cells. Furthermore, we imaged cells expressing all mATG8 family members at endogenous levels and checked GABARAP knockout cells for unspecific staining under fed or macroautophagy-inducing conditions. Finally, we simultaneously stained cells for endogenous GABARAP and the common autophagosomal marker LC3B. Summarized, the presented antibody shows high specificity for GABARAP without cross-reactivity to other mATG8 family members in immunofluorescence imaging making it a valuable tool for the identification of unique GABARAP functions.


Subject(s)
Antibodies, Monoclonal/analysis , Apoptosis Regulatory Proteins/analysis , Fluorescent Antibody Technique/methods , Microtubule-Associated Proteins/analysis , Amino Acid Sequence , Animals , Cell Line , Humans , Optical Imaging/methods , Rats
16.
Cell Mol Immunol ; 16(10): 791-799, 2019 10.
Article in English | MEDLINE | ID: mdl-29973648

ABSTRACT

The chemokine receptor CCR7 and its ligands CCL19 and CCL21 guide the homing and positioning of dendritic and T cells in lymphoid organs, thereby contributing to several aspects of adaptive immunity and immune tolerance. In the present study, we investigated the role of CCR7 in the pathogenesis of collagen-induced arthritis (CIA). By using a novel anti-human CCR7 antibody and humanized CCR7 mice, we evaluated CCR7 as a target in this autoimmune model of rheumatoid arthritis (RA). Ccr7-deficient mice were completely resistant to CIA and presented severely impaired antibody responses to collagen II (CII). Selective CCR7 expression on dendritic cells restored arthritis severity and anti-CII antibody titers. Prophylactic and therapeutic treatment of humanized CCR7 mice with anti-human CCR7 mAb 8H3-16A12 led to complete resistance to CIA and halted CIA progression, respectively. Our data demonstrate that CCR7 signaling is essential for the induction of CIA and identify CCR7 as a potential therapeutic target in RA.


Subject(s)
Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Dendritic Cells/immunology , Receptors, CCR7/metabolism , Animals , Antibodies, Monoclonal/metabolism , Autoantibodies/metabolism , Collagen Type II/immunology , Disease Progression , Disease Resistance , Humans , Mice , Mice, Knockout , Molecular Targeted Therapy , Receptors, CCR7/genetics , Receptors, CCR7/immunology
17.
Sci Rep ; 8(1): 16196, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385877

ABSTRACT

The intellectual disability gene, Sox11, encodes for a critical neurodevelopmental transcription factor with functions in precursor survival, neuronal fate determination, migration and morphogenesis. The mechanisms regulating SOX11's activity remain largely unknown. Mass spectrometric analysis uncovered that SOX11 can be post-translationally modified by phosphorylation. Here, we report that phosphorylatable serines surrounding the high-mobility group box modulate SOX11's transcriptional activity. Through Mass Spectrometry (MS), co-immunoprecipitation assays and in vitro phosphorylation assays followed by MS we verified that protein kinase A (PKA) interacts with SOX11 and phosphorylates it on S133. In vivo replacement of SoxC factors in developing adult-generated hippocampal neurons with SOX11 S133 phospho-mutants indicated that phosphorylation on S133 modulates dendrite development of adult-born dentate granule neurons, while reporter assays suggested that S133 phosphorylation fine-tunes the activation of select target genes. These data provide novel insight into the control of the critical neurodevelopmental regulator SOX11 and imply SOX11 as a mediator of PKA-regulated neuronal development.


Subject(s)
Morphogenesis/genetics , Neurogenesis/genetics , Neurons/metabolism , SOXC Transcription Factors/genetics , Animals , Cerebellar Nuclei/growth & development , Cerebellar Nuclei/metabolism , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , Dendrites/genetics , Dendrites/metabolism , Hippocampus/growth & development , Hippocampus/metabolism , Mass Spectrometry , Mice , Phosphorylation/genetics , Serine/genetics
18.
Cell Rep ; 24(12): 3339-3352, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30232013

ABSTRACT

Protein arginine methyltransferase 6 (PRMT6) catalyzes asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a). This mark has been reported to associate with silent genes. Here, we use a cell model of neural differentiation, which upon PRMT6 knockout exhibits proliferation and differentiation defects. Strikingly, we detect PRMT6-dependent H3R2me2a at active genes, both at promoter and enhancer sites. Loss of H3R2me2a from promoter sites leads to enhanced KMT2A binding and H3K4me3 deposition together with increased target gene transcription, supporting a repressive nature of H3R2me2a. At enhancers, H3R2me2a peaks co-localize with the active enhancer marks H3K4me1 and H3K27ac. Here, loss of H3R2me2a results in reduced KMT2D binding and H3K4me1/H3K27ac deposition together with decreased transcription of associated genes, indicating that H3R2me2a also exerts activation functions. Our work suggests that PRMT6 via H3R2me2a interferes with the deposition of adjacent histone marks and modulates the activity of important differentiation-associated genes by opposing transcriptional effects.


Subject(s)
Histone Code , Histones/metabolism , Nuclear Proteins/genetics , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/genetics , Transcriptional Activation , Animals , Enhancer Elements, Genetic , HEK293 Cells , HeLa Cells , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Humans , Methylation , Mice , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neurogenesis/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein-Arginine N-Methyltransferases/metabolism
19.
Sci Rep ; 8(1): 12332, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120291

ABSTRACT

The GTP-binding protein septin 7 is involved in various cellular processes, including cytoskeleton organization, migration and the regulation of cell shape. Septin 7 function in lymphocytes, however, is poorly characterized. Since the intracellular signaling role of septin 7 is dependent on its interaction network, interaction proteomics was applied to attain novel knowledge about septin 7 function in hematopoietic cells. Our previous finding of decreased septin 7 expression in blood-derived lymphocytes in ERU, a spontaneous animal model for autoimmune uveitis in man, extended the role of septin 7 to a potential key player in autoimmunity. Here, we revealed novel insights into septin 7 function by identification of DOCK8 as an interaction partner in primary blood-derived lymphocytes. Since DOCK8 is associated with important immune functions, our finding of significantly decreased DOCK8 expression and altered DOCK8 interaction network in ERU might explain changes in immune response and shows the contribution of DOCK8 in pathomechanisms of spontaneous autoimmune diseases. Moreover, our analyses revealed insights in DOCK8 function, by identifying the signal transducer ILK as a DOCK8 interactor in lymphocytes. Our finding of the enhanced enrichment of ILK in ERU cases indicates a deviant influence of DOCK8 on inter- and intracellular signaling in autoimmune disease.


Subject(s)
Autoimmunity , Cell Cycle Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Lymphocytes/metabolism , Septins/metabolism , Signal Transduction , Animals , Apoptosis , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/mortality , Biomarkers , Case-Control Studies , Chromatography, Liquid , Disease Models, Animal , Horses , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocytes/immunology , Protein Binding , Tandem Mass Spectrometry
20.
Oncoimmunology ; 7(6): e1436922, 2018.
Article in English | MEDLINE | ID: mdl-29872578

ABSTRACT

In breast cancer, the tumor microenvironment plays a critical role in the tumor progression and responses to therapy. Tumor-associated macrophages (TAMs) are major innate immune cells in tumor microenvironment that regulate intratumoral immunity and angiogenesis by secretion of cytokines, growth factors as well as chitinase-like proteins (CLPs), that combine properties of cytokines and growth factors. YKL-39 is a chitinase-like protein found in human and absent in rodents, and its expression in TAMs and role in breast cancer progression was not studied to date. Here for the first time we demonstrate that YKL-39 is expressed on TAMs, predominantly positive for stabilin-1, but not by malignant cells or other stromal cells in human breast cancer. TGF-beta in combination with IL-4, but not IL-4 alone was responsible of the stimulation of the production of YKL-39 in human primary macrophages. Mechanistically, stabilin-1 directly interacted with YKL-39 and acted as sorting receptor for targeting YKL-39 into the secretory pathway. Functionally, purified YKL-39 acted as a strong chemotactic factor for primary human monocytes, and induced angiogenesis in vitro. Elevated levels of YKL-39 expression in tumors after neoadjuvant chemotherapy (NAC) were predictive for increased risk of distant metastasis and for poor response to NAC in patients with nonspecific invasive breast carcinoma. Our findings suggest YKL-39 as a novel therapeutic target, and blocking of its activity can be combined with NAC in order to reduce the risk of metastasis in breast cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL