Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Microbiol Resour Announc ; 12(7): e0014623, 2023 Jul 18.
Article En | MEDLINE | ID: mdl-37341614

Here, we report the complete genome sequence of Polynucleobacter sp. strain TUM22923, isolated from Antarctic lake sediment. This strain has a genome of 1,860,127 bp, comprising 1,848 protein-coding sequences. These sequence data could contribute to the elucidation of genome streamlining and low-temperature adaptation in members of Polynucleobacter, a cosmopolitan group of ultramicrobacteria.

2.
Microbiol Resour Announc ; 12(6): e0012323, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37249469

We report the whole-genome sequences of three psychrotolerant Mycolicibacterium strains, TUM20983, TUM20984, and TUM20985, isolated from Antarctic soils. Taxonomic analyses indicate that these strains are putative new species. These genome sequences may provide insight into the cold adaptation mechanisms of Mycolicibacterium spp. through future comparative genomic studies.

3.
Environ Sci Technol ; 57(13): 5464-5473, 2023 04 04.
Article En | MEDLINE | ID: mdl-36947486

Identifying drivers of the molecular composition of dissolved organic matter (DOM) is essential to understand the global carbon cycle, but an unambiguous interpretation of observed patterns is challenging due to the presence of confounding factors that affect the DOM composition. Here, we show, by combining ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, that the DOM molecular composition varies considerably among 43 lakes in East Antarctica that are isolated from terrestrial inputs and human influence. The DOM composition in these lakes is primarily driven by differences in the degree of photodegradation, sulfurization, and pH. Remarkable molecular beta-diversity of DOM was found that rivals the dissimilarity between DOM of rivers and the deep ocean, which was driven by environmental dissimilarity rather than the spatial distance. Our results emphasize that the extensive molecular diversity of DOM can arise even in one of the most pristine and organic matter source-limited environments on Earth, but at the same time the DOM composition is predictable by environmental variables and the lakes' ecological history.


Dissolved Organic Matter , Lakes , Humans , Lakes/chemistry , Antarctic Regions , Mass Spectrometry , Rivers/chemistry
4.
Nat Commun ; 14(1): 730, 2023 02 15.
Article En | MEDLINE | ID: mdl-36792917

Prasiola crispa, an aerial green alga, forms layered colonies under the severe terrestrial conditions of Antarctica. Since only far-red light is available at a deep layer of the colony, P. crispa has evolved a molecular system for photosystem II (PSII) excitation using far-red light with uphill energy transfer. However, the molecular basis underlying this system remains elusive. Here, we purified a light-harvesting chlorophyll (Chl)-binding protein complex from P. crispa (Pc-frLHC) that excites PSII with far-red light and revealed its ring-shaped structure with undecameric 11-fold symmetry at 3.13 Šresolution. The primary structure suggests that Pc-frLHC evolved from LHCI rather than LHCII. The circular arrangement of the Pc-frLHC subunits is unique among eukaryote LHCs and forms unprecedented Chl pentamers at every subunit‒subunit interface near the excitation energy exit sites. The Chl pentamers probably contribute to far-red light absorption. Pc-frLHC's unique Chl arrangement likely promotes PSII excitation with entropy-driven uphill excitation energy transfer.


Photosynthesis , Photosystem I Protein Complex , Antarctic Regions , Photosystem I Protein Complex/metabolism , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism , Energy Transfer , Light-Harvesting Protein Complexes/metabolism , Chlorophyll/metabolism
5.
Microbiol Resour Announc ; 12(1): e0106422, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36515502

Basidiomycetous yeast Mrakia gelida MGH-2 has been reported from Surikogi Ike in the Skarvsnes ice-free area, East Antarctica. Here, we report on the high-quality genome sequence of the Mrakia gelida MGH-2 strain analyzed by PacBio Sequel and HiSeq 2500 instruments.

6.
Front Microbiol ; 14: 1323148, 2023.
Article En | MEDLINE | ID: mdl-38249463

The Antarctic terrestrial environment harbors a diverse community of microorganisms, which have adapted to the extreme conditions. The aim of this study was to describe the composition of microbial communities in a diverse range of terrestrial environments (various biocrusts and soils, sands from ephemeral wetlands, biofilms, endolithic and hypolithic communities) in East Antarctica using both molecular and morphological approaches. Amplicon sequencing of the 16S rRNA gene revealed the dominance of Chloroflexi, Cyanobacteria and Firmicutes, while sequencing of the 18S rRNA gene showed the prevalence of Alveolata, Chloroplastida, Metazoa, and Rhizaria. This study also provided a comprehensive assessment of the microphototrophic community revealing a diversity of cyanobacteria and eukaryotic microalgae in various Antarctic terrestrial samples. Filamentous cyanobacteria belonging to the orders Oscillatoriales and Pseudanabaenales dominated prokaryotic community, while members of Trebouxiophyceae were the most abundant representatives of eukaryotes. In addition, the co-occurrence analysis showed a prevalence of positive correlations with bacterial taxa frequently co-occurring together.

7.
Microbiol Spectr ; 9(2): e0042421, 2021 10 31.
Article En | MEDLINE | ID: mdl-34668737

Culture-independent analysis shows that Legionella spp. inhabit a wide range of low-temperature environments, but to date, no psychrotolerant or psychrophilic strains have been reported. Here, we characterized the first cultivated psychrotolerant representative, designated strain TUM19329T, isolated from an Antarctic lake using a polyphasic approach and comparative genomic analysis. A genome-wide phylogenetic tree indicated that this strain was phylogenetically separate at the species level. Strain TUM19329T shared common physiological traits (e.g., Gram-negative, limited growth on buffered charcoal-yeast extract α-ketoglutarate [BCYEα] agar with l-cysteine requirements) with its relatives, but it also showed psychrotolerant growth properties (e.g., growth at 4°C to 25°C). Moreover, this strain altered its own cellular fatty acid composition to accumulate unsaturated fatty acid at a lower temperature, which may help maintain the cell membrane fluidity. Through comparative genomic analysis, we found that this strain possessed massive mobile genetic elements compared with other species, amounting to up to 17% of the total genes. The majority of the elements were the result of the spread of only a few insertion sequences (ISs), which were spread throughout the genome by a "copy-and-paste" mechanism. Furthermore, we found metabolic genes, such as fatty acid synthesis-related genes, acquired by horizontal gene transfer (HGT). The expansion of ISs and HGT events may play a major role in shaping the phenotype and physiology of this strain. On the basis of the features presented here, we propose a new species-Legionella antarctica sp. nov.-represented by strain TUM19329T (= GTC 22699T = NCTC 14581T). IMPORTANCE This study characterized a unique cultivated representative of the genus Legionella isolated from an Antarctic lake. This psychrotolerant strain had some common properties of known Legionella species but also displayed other characteristics, such as plasticity in fatty acid composition and an enrichment of mobile genes in the genome. These remarkable properties, as well as other factors, may contribute to cold hardiness, and this first cultivated cold-tolerant strain of the genus Legionella may serve as a model bacterium for further studies. It is worth noting that environmentally derived 16S rRNA gene phylotypes closely related to the strain characterized here have been detected from diverse environments outside Antarctica, suggesting a wide distribution of psychrotolerant Legionella bacteria. Our culture- and genome-based findings may accelerate the ongoing studies of the behavior and pathogenicity of Legionella spp., which have been monitored for many years in the context of public health.


Genome, Bacterial , Lakes/microbiology , Legionella/genetics , Legionella/isolation & purification , Antarctic Regions , Bacterial Typing Techniques , Cold Temperature , DNA, Bacterial/genetics , Fatty Acids/metabolism , Genomics , Interspersed Repetitive Sequences , Lakes/chemistry , Legionella/classification , Legionella/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics
8.
Microorganisms ; 9(8)2021 Aug 07.
Article En | MEDLINE | ID: mdl-34442759

The basidiomycetous yeast, Glaciozyma antarctica, was isolated from various terrestrial materials collected from the Sôya coast, East Antarctica, and formed frost-columnar colonies on agar plates frozen at -1 °C. Thawed colonies were highly viscous, indicating that the yeast produced a large number of extracellular polysaccharides (EPS). G. antarctica was then cultured on frozen media containing red food coloring to observe the dynamics of solutes in unfrozen water; pigments accumulated in frozen yeast colonies, indicating that solutes were concentrated in unfrozen water of yeast colonies. Moreover, the yeast produced a small quantity of ice-binding proteins (IBPs) which inhibited ice crystal growth. Solutes in unfrozen water were considered to accumulate in the pore of frozen colonies. The extracellular IBPs may have held an unfrozen state of medium water after accumulation in the frost-columnar colony.

9.
Environ Sci Technol ; 55(14): 10175-10185, 2021 07 20.
Article En | MEDLINE | ID: mdl-34240854

Accelerated glacier melt and runoff may lead to inputs of labile dissolved organic matter (DOM) to downstream ecosystems and stimulate the associated biogeochemical processes. However, still little is known about glacial DOM composition and its downstream processing before entering the ocean, although the function of DOM in food webs and ecosystems largely depends on its composition. Here, we employ a set of molecular and optical techniques (UV-vis absorption and fluorescence spectroscopy, 1H NMR, and ultrahigh-resolution mass spectrometry) to elucidate the composition of DOM in Antarctic glacial streams and its downstream change. Glacial DOM consisted largely of a mixture of small microbial-derived biomolecules. 1H NMR analysis of bulk water revealed that these small molecules were processed downstream into more complex, structurally unrecognizable molecules. The extent of processing varied between streams. By applying multivariate statistical (compositional data) analysis of the DOM molecular data, we identified molecular compounds that were tightly associated and moved in parallel in the glacial streams. Lakes in the middle of the flow paths enhanced water residence time and allowed for both more DOM processing and production. In conclusion, downstream processing of glacial DOM is substantial in Antarctica and affects the amounts of biologically labile substrates that enter the ocean.


Ecosystem , Organic Chemicals , Antarctic Regions , Ice Cover , Lakes , Spectrometry, Fluorescence
10.
Appl Environ Microbiol ; 87(2)2021 01 04.
Article En | MEDLINE | ID: mdl-33097517

Waterborne pathogenic diseases are public health issues, especially for people staying in remote environments, such as Antarctica. After repeated detection of Legionella by PCR from the shower room of Syowa Station, the Japanese Antarctic research station, we wanted to understand the occurrence of waterborne pathogens, especially Legionella, in the station and their potential sources. In this study, we analyzed water and biofilm samples collected from the water facilities of Syowa Station, as well as water samples from surrounding glacier lakes, by 16S rRNA gene-based amplicon sequencing. For Legionella spp., we further attempted to obtain a detailed community structure by using genus-specific primers. The results showed that potentially pathogenic genera were mostly localized in the station, while Legionella spp., Pseudomonas spp., and Mycobacterium spp. were also widely distributed in lakes. Genus-specific analysis of Legionella spp. within the lake environments confirmed the presence of diverse Legionella amplicon sequence variants (ASVs) that were distinctly different from the Legionella ASVs detected in the station. The majority of the Legionella ASVs inhabiting Antarctic lake habitats were phylogenetically distinct from known Legionella species, whereas the ASVs detected in the human-made station tended to contain ASVs highly similar to well-described mesophilic species with human pathogenicity. These data suggest that unexpected Legionella diversity exists in remote Antarctic cold environments and that environmental differences (e.g., temperature) in and around the station affect the community structure.IMPORTANCE We comprehensively examined the localization of potential waterborne pathogens in the Antarctic human-made and natural aquatic environment with special focus on Legionella spp. Some potential pathogenic genera were detected with low relative abundance in the natural environment, but most detections of these genera occurred in the station. Through detailed community analysis of Legionella spp., we revealed that a variety of Legionella spp. was widely distributed in the Antarctic environment and that they were phylogenetically distinct from the described species. This fact indicates that there are still diverse unknown Legionella spp. in Antarctica, and this genus encompasses a greater variety of species in low-temperature environments than is currently known. In contrast, amplicon sequence variants closely related to known Legionella spp. with reported pathogenicity were almost solely localized in the station, suggesting that human-made environments alter the Legionella community.


Drinking Water/microbiology , Lakes/microbiology , Legionella/isolation & purification , Antarctic Regions , Environmental Monitoring , Humans , Legionella/genetics , Mycobacterium/genetics , Mycobacterium/isolation & purification , Phylogeny , Pseudomonas/genetics , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Water Microbiology
11.
Microbiol Resour Announc ; 9(16)2020 Apr 16.
Article En | MEDLINE | ID: mdl-32299881

Here, we report the complete genome sequence characteristics of Legionella strain TUM19329, a candidate for a novel psychrotolerant species isolated from Antarctic lake sediment. The genome assembly contains a single 3,750,805-bp contig with a G+C content of 39.1% and is predicted to encode 3,538 proteins.

12.
Microorganisms ; 8(4)2020 Mar 31.
Article En | MEDLINE | ID: mdl-32244517

Antarctica has one of the most extreme environments on Earth, with low temperatures and low nutrient levels. Antarctica's organisms live primarily in the coastal, ice-free areas which cover approximately 0.18% of the continent's surface. Members of Cyanobacteria and eukaryotic algae are important primary producers in Antarctica since they can synthesize organic compounds from carbon dioxide and water using solar energy. However, community structures of photosynthetic algae in Antarctica have not yet been fully explored at molecular level. In this study, we collected diverse algal samples in lacustrine and hydro-terrestrial environments of Langhovde and Skarvsnes, which are two ice-free regions in East Antarctica. We performed deep amplicon sequencing of both 16S ribosomal ribonucleic acid (rRNA) and 18S rRNA genes, and we explored the distribution of sequence variants (SVs) of these genes at single nucleotide difference resolution. SVs of filamentous Cyanobacteria genera, including Leptolyngbya, Pseudanabaena, Phormidium, Nodosilinea, Geitlerinama, and Tychonema, were identified in most of the samples, whereas Phormidesmis SVs were distributed in fewer samples. We also detected unicellular, multicellular or heterocyst forming Cyanobacteria strains, but in relatively small abundance. For SVs of eukaryotic algae, Chlorophyta, Cryptophyta, and Ochrophyta were widely distributed among the collected samples. In addition, there was a red colored bloom of eukaryotic alga, Geminigera cryophile (Cryptophyta), in the Langhovde coastal area. Eukaryotic SVs of Acutuncus antarcticus and/or Diphascon pingue of Tardigrada were dominant among most of the samples. Our data revealed the detailed structures of the algal communities in Langhovde and Skarvsnes. This will contribute to our understanding of Antarctic ecosystems and support further research into this subject.

13.
Microbes Environ ; 35(1)2020.
Article En | MEDLINE | ID: mdl-32009017

The maximum ammonia oxidation potential (AOP) of a topsoil in Langhovde, East Antarctica was 22.1±2.4| |ng N g-1 dry soil h-1 (2| |mM ammonium, 10°C, n=3). This topsoil exhibited twin AOP peaks (1 and 2| |mM ammonium) at 10°C, but not at 20°C. Six and ten operational taxonomic units (OTUs) were identified for ammonia-oxidizing bacteria (AOB) and archaea (AOA) amoA, respectively. AOB were classified into Nitrosospira; the two dominant OTUs corresponded to the Mount Everest cluster. AOA were classified into three clusters; Nitrososphaera and Nitrosocosmicus were the two dominant clusters.


Ammonia/metabolism , Bryophyta/microbiology , Lichens/microbiology , Soil Microbiology , Antarctic Regions , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Nitrification , Oxidation-Reduction , Phylogeny , Soil/chemistry , Temperature
14.
Biochim Biophys Acta Bioenerg ; 1861(2): 148139, 2020 02 01.
Article En | MEDLINE | ID: mdl-31825812

An aerial green alga, Prasiola crispa (Lightf.) Menegh, which is known to form large colonies in Antarctic habitats, is subject to severe environmental stresses due to low temperature, draught and strong sunlight in summer. A considerable light-absorption by long-wavelength chlorophylls (LWC) at around 710 nm, which seem to consist of chlorophyll a, was detected in thallus of P. crispa harvested at a terrestrial environment in Antarctica. Absorption level at 710 nm against that at 680 nm was correlated with fluorescence emission intensity at 713 nm at room temperature and the 77 K fluorescence emission band from LWC was found to be emitted at 735 nm. We demonstrated that the LWC efficiently transfer excitation energy to photosystem II (PSII) reaction center from measurements of action spectra of photosynthetic oxygen evolution and P700 photo-oxidation. The global quantum yield of PSII excitation in thallus by far-red light was shown to be as high as by orange light, and the excitation balance between PSII and PSI was almost same in the two light sources. It is thus proposed that the LWC increase the photosynthetic productivity in the lower parts of overlapping thalli and contribute to the predominance of alga in the severe environment.


Chlorophyll A/metabolism , Chlorophyta/metabolism , Light , Photosystem II Protein Complex/metabolism , Antarctic Regions , Light-Harvesting Protein Complexes/metabolism , Oxygen/metabolism , Photosystem I Protein Complex/metabolism , Spectrometry, Fluorescence
15.
Water Res ; 163: 114901, 2019 Oct 15.
Article En | MEDLINE | ID: mdl-31362208

This study characterized dissolved organic matter (DOM) obtained from 47 lakes and 2 streams on ice-free areas at Lützow-Holm Bay and Amundsen Bay in East Antarctica (n = 74), where few biogeochemical studies have been historically conducted. Samples were analyzed for basic water chemistry and by resin fractionation, UV-vis spectroscopy, and excitation emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC). Salinity of the samples ranged very broadly from fresh to hypersaline as a result of evaporative concentration. There was a clear positive correlation between log-salinity and the spectral slopes of DOM (S275-295), an indicator of photodegradation. Thus, we interpreted the correlation as a progression of photodegradation by prolonged water retention time. Of the identified seven PARAFAC components, three ubiquitous humic-like components decreased as photodegradation progressed, while a photorefractory UVC humic-like component increased its relative abundance. A non-humic component, traditionally defined as Peak N, did not show a trend depending on photodegradation, and its level was high in nutrient-rich lakes, presumably due to high in-situ production. We found robust correlations between the relative abundance of the ubiquitous humic-like components and that of the Peak N component in the bulk DOM irrespective of water types or ice-free areas. We proposed there were common processes that generated the ubiquitous humic-like components from the Peak N component in the Lützow-Holm Bay and Amundsen Bay lakes and streams, such as bacterial processing of primary production-derived DOM and photochemical transformation of microbial DOM.


Lakes , Rivers , Antarctic Regions , Factor Analysis, Statistical , Humic Substances , Spectrometry, Fluorescence
16.
Sci Rep ; 9(1): 4639, 2019 03 15.
Article En | MEDLINE | ID: mdl-30874599

The availability of nutrients for primary producers has long been thought to be the main limiting factor for primary productivity in nutrient-poor lake ecosystems. However, recent studies have indicated that the availability of light energy is also important. On the other hand, the amount of phototroph was reported to decrease in summer in Antarctic lakes, furthermore, the light environment underwater was shown containing high amount of ultraviolet energy in small Antarctic lakes. Here, we hypothesized that primary productivity is limited by not only nutrients and simple light quantity but also light quality in nutrient-poor lakes. Then, we investigate factors influencing primary production by benthic phototrophic communities in shallow nutrient-poor lakes. We examine the relationships between primary production in 17 Antarctic freshwater lakes and nutrient concentrations in lake and benthic water, temperature and light energy. Primary production is decreased by ultraviolet energy reaching the lake bed, showing that production is determined by light quality. We also correlate ultraviolet energy in lake water with the catchment area of each lake. Our results show that the underwater light environment has an important influence on primary production as a key limitation factor and is sensitive to materials in runoff from the surrounding environment for pristine lakes.

17.
Ann Bot ; 122(7): 1263-1278, 2018 12 31.
Article En | MEDLINE | ID: mdl-30052754

Background and Aims: All photosynthetic organisms are faced with photoinhibition, which would lead to death in severe environments. Because light quality and light intensity fluctuate dynamically in natural microenvironments, quantitative and qualitative analysis of photoinhibition is important to clarify how this environmental pressure has impacted ecological behaviour in different organisms. Methods: We evaluated the wavelength dependency of photoinactivation to photosystem II (PSII) of Prasiola crispa (green alga), Umbilicaria decussata (lichen) and Ceratodon purpureus (bryophyte) harvested from East Antarctica. For evaluation, we calculated reaction coefficients, Epis, of PSII photoinactivation against energy dose using a large spectrograph. Daily fluctuation of the rate coefficient of photoinactivation, kpi, was estimated from Epis and ambient light spectra measured during the summer season. Key Results: Wavelength dependency of PSII photoinactivation was different for the three species, although they form colonies in close proximity to each other in Antarctica. The lichen exhibited substantial resistance to photoinactivation at all wavelengths, while the bryophyte showed sensitivity only to UV-B light (<325 nm). On the other hand, the green alga, P. crispa, showed ten times higher Epi to UV-B light than the bryophyte. It was much more sensitive to UV-A (325-400 nm). The risk of photoinhibition fluctuated considerably throughout the day. On the other hand, Epis were reduced dramatically for dehydrated compared with hydrated P. crispa. Conclusions: The deduced rate coefficients of photoinactivation under ambient sunlight suggested that P. crispa needs to pay a greater cost to recover from photodamage than the lichen or the bryophyte in order to keep sufficient photosynthetic activity under the Antarctic habitat. A newly identified drought-induced protection mechanism appears to operate in P. crispa, and it plays a critical role in preventing the oxygen-evolving complex from photoinactivation when the repair cycle is inhibited by dehydration.


Bryopsida/physiology , Chlorophyta/physiology , Droughts , Lichens/physiology , Light , Photosystem II Protein Complex/metabolism , Antarctic Regions , Bryopsida/radiation effects , Chlorophyta/radiation effects , Ecosystem , Lichens/radiation effects , Photosynthesis
18.
Cryobiology ; 70(3): 293-6, 2015 Jun.
Article En | MEDLINE | ID: mdl-25862934

Milk fat curdle is difficult to remove from sewage. In an attempt to identify an appropriate agent for bio-remediation of milk fat curdle, Mrakia strains were collected from the Skarvsnes ice-free area of Antarctica. A total of 27 strains were isolated and tested for their ability to decompose milk fat at temperatures ranging from 4°C to 15°C. All strains could decompose milk fat at 4°C and 10°C. Phylogenetic analysis and comparison of the decomposition ability of milk fat (DAMF) revealed that the DAMF may be useful for predicting the outcome of phylogenetic analysis based on ITS sequences.


Basidiomycota/metabolism , Cold Temperature , Lipid Metabolism/physiology , Milk/metabolism , Animals , Antarctic Regions , Basidiomycota/classification , Biodegradation, Environmental , Ice , Phylogeny
19.
Genome Announc ; 3(1)2015 Jan 22.
Article En | MEDLINE | ID: mdl-25614567

Mrakia blollopis strain SK-4 was isolated from an algal mat of Naga-ike, a lake in Skarvsnes, East Antarctica. Here, we report the draft genome sequence of M. blollopis SK-4. This is the first report on the genome sequence of any cold-adapted fungal species.

20.
Plant Physiol ; 166(1): 337-48, 2014 Sep.
Article En | MEDLINE | ID: mdl-25056923

Lichens result from symbioses between a fungus and either a green alga or a cyanobacterium. They are known to exhibit extreme desiccation tolerance. We investigated the mechanism that makes photobionts biologically active under severe desiccation using green algal lichens (chlorolichens), cyanobacterial lichens (cyanolichens), a cephalodia-possessing lichen composed of green algal and cyanobacterial parts within the same thallus, a green algal photobiont, an aerial green alga, and a terrestrial cyanobacterium. The photosynthetic response to dehydration by the cyanolichen was almost the same as that of the terrestrial cyanobacterium but was more sensitive than that of the chlorolichen or the chlorobiont. Different responses to dehydration were closely related to cellular osmolarity; osmolarity was comparable between the cyanolichen and a cyanobacterium as well as between a chlorolichen and a green alga. In the cephalodium-possessing lichen, osmolarity and the effect of dehydration on cephalodia were similar to those exhibited by cyanolichens. The green algal part response was similar to those exhibited by chlorolichens. Through the analysis of cellular osmolarity, it was clearly shown that photobionts retain their original properties as free-living organisms even after lichenization.


Chlorophyta/physiology , Lichens/physiology , Nostoc commune/physiology , Symbiosis , Water/physiology , Lichens/microbiology , Osmotic Pressure , Photosynthesis
...