Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Exp Biol Med (Maywood) ; 248(7): 561-572, 2023 04.
Article in English | MEDLINE | ID: mdl-37158119

ABSTRACT

At least two million people in the United States of America live with lost limbs, and the number is expected to double by 2050, although the incidence of amputations is significantly greater in other parts of the world. Within days to weeks of the amputation, up to 90% of these individuals develop neuropathic pain, presenting as phantom limb pain (PLP). The pain level increases significantly within one year and remains chronic and severe for about 10%. Amputation-induced changes are considered to underlie the causation of PLP. Techniques applied to the central nervous system (CNS) and peripheral nervous system (PNS) are designed to reverse amputation-induced changes, thereby reducing/eliminating PLP. The primary treatment for PLP is the administration of pharmacological agents, some of which are considered but provide no more than short-term pain relief. Alternative techniques are also discussed, which provide only short-term pain relief. Changes induced by various cells and the factors they release are required to change neurons and their environment to reduce/eliminate PLP. It is concluded that novel techniques that utilize autologous platelet-rich plasma (PRP) may provide long-term PLP reduction/elimination.


Subject(s)
Neuralgia , Phantom Limb , Humans , United States , Phantom Limb/therapy , Phantom Limb/epidemiology , Phantom Limb/etiology , Amputation, Surgical , Neuralgia/therapy , Extremities
2.
Plast Reconstr Surg Glob Open ; 11(4): e4927, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37051209

ABSTRACT

Ulnar nerve injury induces chronic neuropathic pain and is frequently devastating due to loss of cupping the hand around objects (finger clawing) and diminished grip strength. There is little chance of restoring good function, eliminating finger clawing, or reducing the pain. A novel technique was tested for its efficacy in promoting ulnar nerve function and reducing finger clawing and chronic neuropathic pain. A 25-year-old subject presented 5.7 months after a wrist gunshot that created three nerve gaps proximal to the deep ulnar nerve branch. He sought restoration of function due to developing ulnar nerve injury-induced claw hand and increasingly severe chronic neuropathic pain. After resection of the scarred nerve tissue, each gap was 10 cm long. The gaps were bridged with two nonreversed sural nerve grafts within a PRP-filled NeuroMend collagen tube (Collagen Matrix, Oakland, N.J.). Some axons regenerated entirely across all three 10-cm-long repaired nerve gaps, restoring excellent topographically correct sensitivity of S4, including two-point discrimination of 4 mm, good M4 motor function, and full ROM. The ulnar nerve injury-induced finger clawing was eliminated, and the chronic neuropathic pain of 7 was reduced to 0 on a 0-10 validated scale and did not return over the following 3.75 years. Thus, this novel technique induces good sensory and motor function, despite repairing three 10-cm-long nerve gaps while eliminating ulnar nerve injury-induced hand clawing and chronic neuropathic pain. Further studies are required to determine whether the effects were due to PRP.

3.
Neural Regen Res ; 17(5): 948-952, 2022 May.
Article in English | MEDLINE | ID: mdl-34558506

ABSTRACT

The clinical "gold standard" technique for attempting to restore function to nerves with a gap is to bridge the gap with sensory autografts. However, autografts induce good to excellent recovery only across short nerve gaps, in young patients, and when repairs are performed a short time post nerve trauma. Even under the best of conditions, < 50% of patients recover good recovery. Although many alternative techniques have been tested, none is as effective as autografts. Therefore, alternative techniques are required that increase the percentage of patients who recover function and the extent of their recovery. This paper examines the actions of lithium, and how it appears to trigger all the cellular and molecular events required to promote axon regeneration, and how both in animal models and clinically, lithium administration enhances both the extent of axon regeneration and neurological recovery. The paper proposes more extensive clinical testing of lithium for its ability and reliability to increase the extent of axon regeneration and functional recovery.

4.
Plast Reconstr Surg Glob Open ; 9(9): e3831, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34584828

ABSTRACT

Sensory nerve grafts are the clinical "gold standard" for repairing peripheral nerve gaps. However, reliable good-to-excellent recovery develops only for gaps less than 3-5 cm, repairs performed less than 3-5 months posttrauma, and patients aged less than 20-25 years. As the value of any variable increases, the extent of recovery decreases precipitously, and if the values of any two or all increase, there is little to no recovery. One 9-cm-long and two 11-cm-long nerve gaps in a 56-year-old patient were repaired 2.6 years posttrauma. They were bridged with two sensory nerve grafts within an autologous platelet-rich plasma-filled collagen tube. Both were connected to the proximal ulnar nerve stump, with one graft end to the distal motor and the other to the sensory nerve branches. Although presurgery the patient suffered chronic level 10 excruciating neuropathic pain, it was reduced to 6 within 2 months, and did not increase for more than 2 years. Motor axons regenerated across the 9-cm gap and innervated the appropriate two measured muscles, with limited muscle fiber recruitment. Sensory axons regenerated across both 11-cm gaps and restored normal topographically correct sensitivity to stimuli of all sensory modalities, including static two-point discrimination of 5 mm, and pressure of 2.83 g to all regions innervated by both sensory nerves. This novel technique induced a significant long-term reduction in chronic excruciating neuropathic pain while promoting muscle reinnervation and complete sensory recovery, despite the values of all three variables that reduce or prevent axon regeneration and recovery being simultaneously large.

5.
Regen Med ; 16(4): 391-404, 2021 04.
Article in English | MEDLINE | ID: mdl-33876695

ABSTRACT

Non-healing cutaneous wounds, including pressure, diabetic and venous ulcers, are wounds where the skin and underlying tissues die due to ischemia, infection, metabolic conditions, immunosuppression or radiation. Some can be eliminated with relatively straightforward techniques, although they may continue to grow in diameter and depth, becoming increasingly painful and never heal. Others respond more slowly or poorly to treatment, while others are recalcitrant to treatments. This review examines the etiology of non-healing wounds and different wound management treatments. In addition, it examines the efficacy of platelet-rich plasma in promoting wound healing and its potential mechanisms of action. It is concluded that platelet-rich plasma alone, but more effectively when combined with another technique(s), has the greatest potential for promoting complete wound healing. However, further studies are required to determine whether the efficacy of wound healing induced by each of these techniques is enhanced by applying the techniques simultaneously.


Subject(s)
Platelet-Rich Plasma , Wound Healing
6.
Int J Mol Sci ; 21(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155716

ABSTRACT

Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical "gold standard" technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2-3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery. It also discusses preliminary data from the clinical application of a novel technique that restores neurological function across long nerve gaps, when repairs are performed at long times post-trauma, and in older patients, even under all three of these conditions. Thus, it appears that function can be restored under conditions where sensory nerve grafts are not effective.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries/therapy , Recovery of Function , Sensory Receptor Cells/transplantation , Wounds and Injuries/therapy , Animals , Humans
7.
Mol Neurobiol ; 57(1): 67-87, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31813127

ABSTRACT

Injury typically results in the development of neuropathic pain, but the pain normally decreases and disappears in paralleled with wound healing. The pain results from cells resident at, and recruited to, the injury site releasing pro-inflammatory cytokines and other mediators leading to the development of pro-inflammatory environment and causing nociceptive neurons to develop chronic ectopic electrical activity, which underlies neuropathic pain. The pain decreases as some of the cells that induce pro-inflammation, changing their phenotype leading to the blocking the release of pro-inflammatory mediators while releasing anti-inflammatory mediators, and blocking nociceptive neuron chronic spontaneous electrical activity. Often, despite apparent wound healing, the neuropathic pain becomes chronic. This raises the question of how chronic pain can be eliminated. While many of the cells and mediators contributing to the development and maintenance of neuropathic pain are known, a better understanding is required of how the injury site environment can be controlled to permanently eliminate the pro-inflammatory environment and silence the chronically electrically active nociceptive neurons. This paper examines how methods that can promote the transition of the pro-inflammatory injury site to an anti-inflammatory state, by changing the composition of local cell types, modifying the activity of pro- and anti-inflammatory receptors, inducing the release of anti-inflammatory mediators, and silencing the chronically electrically active nociceptive neurons. It also examines the hypothesis that factors released from platelet-rich plasma applied to chronic pain sites can permanently eliminate chronic inflammation and its associated chronic pain.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Chronic Pain/drug therapy , Inflammation/drug therapy , Neuralgia/drug therapy , Animals , Chronic Pain/complications , Cytokines/metabolism , Humans , Inflammation/complications , Nociceptors/drug effects
8.
Mol Neurobiol ; 57(1): 51-66, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31701439

ABSTRACT

Injuries typically result in the development of neuropathic pain, which decreases in parallel with wound healing. However, the pain may remain after the injury appears to have healed, which is generally associated with an ongoing underlying pro-inflammatory state. Injury induces many cells to release factors that contribute to the development of a pro-inflammatory state, which is considered an essential first step towards wound healing. However, pain elimination requires a transition of the injury site from pro- to anti-inflammatory. Therefore, developing techniques that eliminate chronic pain require an understanding of the cells resident at and recruited to injury sites, the factors they release, that promote a pro-inflammatory state, and promote the subsequent transition of that site to be anti-inflammatory. Although a relatively large number of cells, factors, and gene expression changes are involved in these processes, it may be possible to control a relatively small number of them leading to the reduction and elimination of chronic neuropathic pain. This first of two papers examines the roles of the most salient cells and mediators associated with the development and maintenance of chronic neuropathic pain. The following paper examines the cells and mediators involved in reducing and eliminating chronic neuropathic pain.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Neuralgia/drug therapy , Peripheral Nerve Injuries/drug therapy , Animals , Brain/drug effects , Brain/physiopathology , Humans , Neuralgia/physiopathology , Neurons/drug effects , Peripheral Nerve Injuries/physiopathology
9.
J Pain Res ; 12: 109-116, 2019.
Article in English | MEDLINE | ID: mdl-30613159

ABSTRACT

Although chronic pain affects about 1% of the US population, it remains largely resistant to treatment. Despite great variability in pain outcomes, the application of autologous platelet-rich plasma (PRP) has become increasingly popular in attempts to reduce chronic pain. The variability in PRP efficacy raises the question of whether PRP actually has an analgesic capacity, and if so, can that capacity be made consistent and maximized. The best explanation for the variability in PRP analgesic efficacy is the failure during PRP preparation and application to take into account variables that can increase or eliminate its analgesic capabilities. This suggests that if the variables are reduced and controlled, a PRP preparation and application protocol can be developed leading to PRP inducing reliable, complete, and long-term pain relief. The goal of this study was to examine some of the variables that influence platelets and see how they might be controlled to increase the analgesic potential of PRP. Among the variables examined are the physiological status of the patient, methods used to prepare PRP, and methods of PRP application. The goal of modifying these variables is to minimize platelet serotonin content, maximize platelet content of factors that reduce inflammation and pain, while maintaining their bioactivity, maximize platelet capacity to aggregate at injury sites, induce rapid and simultaneous release of their contents, and optimize PRP application protocols. It is concluded that controlling some or many of these variables will lead to PRP that induces reliable, maximum, and long-term relief of chronic pain.

10.
J Pain Res ; 11: 2239-2245, 2018.
Article in English | MEDLINE | ID: mdl-30349350

ABSTRACT

Rotator-cuff tears (RCTs) are typically associated with chronic pain. The most common treatment for reducing pain is the injection of cortisone into the injury site. An alternative and increasingly used technique is the injection of autologous platelet-rich plasma (PRP). A limitation of cortisone is its pain relief is short-lived, while PRP has the limitation of providing pain relief to only about 50% of patients, making its efficacy questioned, although when it is effective, its efficacy is longer than cortisone. Little is known about what accounts for these limitations. This paper presents results from a patient with RCTs causing excruciating pain who received an injection of PRP into that shoulder resulting in complete pain elimination that was ongoing at 2 years and 2 months. When 7-month severe posttrauma pain associated with the RCT developed in the contralateral shoulder, PRP prepared the same way and injected by the same person who performed the first injection provided no pain relief. However, a subsequent single cortisone injection resulted in complete pain elimination, which was ongoing at >15 months. These observations indicate that PRP can have inconsistent effects in reducing pain, not only between patients but also within the same patient. Further, although the pain relief induced by cortisone is normally not long-lasting, when given following a PRP injection, it can induce complete pain relief lasting >15 months. This paper discusses possible reasons for the variability in PRP efficacy on pain relief and addresses the possibility that when administered together, PRP and cortisone may act in a complementary manner, leading to significantly greater and longer-lasting pain relief.

11.
Mol Neurobiol ; 55(1): 70-84, 2018 01.
Article in English | MEDLINE | ID: mdl-28921418

ABSTRACT

Phantom limb pain is a chronic neuropathic pain that develops in 45-85% of patients who undergo major amputations of the upper and lower extremities and appears predominantly during two time frames following an amputation: the first month and later about 1 year. Although in most patients the frequency and intensity of pain diminish over time, severe pain persists in about 5-10%. It has been proposed that factors in both the peripheral and central nervous systems play major roles in triggering the development and maintenance of pain associated with extremity amputations. Chronic pain is physically and mentally debilitating, affecting an individual's capacity for self-care, but also diminishing an individual's daily capacity for personal and economic independence. In addition, the pain may lead to depression and feelings of hopelessness. A National Center for Biotechnology Information study found that in the USA alone, the annual cost of dealing with neuropathic pain is more than $600 billion, with an estimated 20 million people in the USA suffering from this condition. Although the pain can be reduced by antiepileptic drugs and analgesics, they are frequently ineffective or their side effects preclude their use. The optimal approach for eliminating neuropathic pain and improving individuals' quality of life is the development of novel techniques that permanently prevent the development and maintenance of neuropathic pain, or that eliminate the pain once it has developed. What is still required is understanding when and where an effective novel technique must be applied, such as onto the nerve stump of the transected peripheral axons, dorsal root ganglion neurons, spinal cord, or cortex to induce the desired influences. This review, the second of two in this journal volume, examines the techniques that may be capable of reducing or eliminating chronic neuropathic pain once it has developed. Such an understanding will improve amputees' quality of life by blocking the mechanisms that trigger and/or maintain PLP and chronic neuropathic pain.


Subject(s)
Adaptation, Psychological/physiology , Amputation, Surgical/psychology , Neuralgia/psychology , Neuralgia/therapy , Phantom Limb/psychology , Phantom Limb/therapy , Amputation, Surgical/adverse effects , Analgesics/therapeutic use , Animals , Electric Stimulation Therapy/methods , Humans , Transcranial Magnetic Stimulation/methods
12.
Mol Neurobiol ; 55(1): 60-69, 2018 01.
Article in English | MEDLINE | ID: mdl-28921474

ABSTRACT

Phantom limb pain (PLP) is a chronic neuropathic pain occurring in 45-85% of patients who undergo major amputations of the upper and lower extremities. Chronic pain is physically and mentally debilitating, affecting an individual's potential for self-care and the performance of daily living activities essential for personal and economic independence. In addition, chronic pain may lead to depression and feelings of hopelessness. A National Center for Biotechnology Information study found that in the USA alone, the annual cost of dealing with neuropathic pain is more than $600 billion, with an estimated 20 million people in the USA suffering this condition. PLP manifest predominantly during two time frames post-amputation: during days to a month and again at around 1 year. In most patients, the frequency and intensity of the chronic neuropathic pain diminish over time, but severe pain persists in about 5-10% of patients. The development and maintenance of neuropathic pain is attributed to extremity amputations causing changes in peripheral axon properties and neuronal circuitry in both the peripheral and central nervous systems: peripheral axons, dorsal root ganglia, the spinal cord, and the cortex. However, it is not clear how the changes in neuronal properties in these different locations affect neuropathic pain. Is pain initiated by one set of post-amputation changes while the pain is maintained by another set of changes? If one set of amputation-induced changes, such as those of peripheral axons, are reverted to normal, is the chronic pain reduced or eliminated, while reversing another set of neuronal changes and neuronal circuits to normal do not reduce or eliminate the pain? Or, must all the amputation-induced changes be reverted to normal for pain to be eliminated? While this review examines the mechanisms underlying the induction or maintenance of PLP, it is beyond its scope to examine the mechanisms that may permanently reduce or eliminate neuropathic pain. This paper is the first of two reviews in this journal and deals with the causes of chronic PLP development and maintenance, while the second review examines potential mechanisms that may be responsible for promoting the capacity to coping with PLP by reducing or eliminating it.


Subject(s)
Amputation, Surgical/adverse effects , Neuralgia/physiopathology , Phantom Limb/physiopathology , Amputation, Surgical/trends , Animals , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiopathology , Humans , Nerve Net/metabolism , Nerve Net/physiopathology , Neuralgia/metabolism , Phantom Limb/metabolism , Spinal Cord/metabolism , Spinal Cord/physiopathology
13.
Regen Med ; 11(1): 107-22, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26681143

ABSTRACT

Despite diverse methods being applied to induce wound healing, many wounds remain recalcitrant to all treatments. Photobiomodulation involves inducing wound healing by illuminating wounds with light emitting diodes or lasers. While used on different animal models, in vitro, and clinically, wound healing is induced by many different wavelengths and powers with no optimal set of parameters yet being identified. While data suggest that simultaneous multiple wavelength illumination is more efficacious than single wavelengths, the optimal single and multiple wavelengths must be better defined to induce more reliable and extensive healing of different wound types. This review focuses on studies in which specific wavelengths induce wound healing and on their mechanisms of action.


Subject(s)
Low-Level Light Therapy , Wound Healing/radiation effects , Animals , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation/radiation effects , Humans , Light , Neuroprotection/drug effects , Wound Healing/genetics
14.
Mol Neurobiol ; 52(2): 990-1014, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26048672

ABSTRACT

Platelet-rich plasma (PRP) has been tested in vitro, in animal models, and clinically for its efficacy in enhancing the rate of wound healing, reducing pain associated with injuries, and promoting axon regeneration. Although extensive data indicate that PRP-released factors induce these effects, the claims are often weakened because many studies were not rigorous or controlled, the data were limited, and other studies yielded contrary results. Critical to assessing whether PRP is effective are the large number of variables in these studies, including the method of PRP preparation, which influences the composition of PRP; type of application; type of wounds; target tissues; and diverse animal models and clinical studies. All these variables raise the question of whether one can anticipate consistent influences and raise the possibility that most of the results are correct under the circumstances where PRP was tested. This review examines evidence on the potential influences of PRP and whether PRP-released factors could induce the reported influences and concludes that the preponderance of evidence suggests that PRP has the capacity to induce all the claimed influences, although this position cannot be definitively argued. Well-defined and rigorously controlled studies of the potential influences of PRP are required in which PRP is isolated and applied using consistent techniques, protocols, and models. Finally, it is concluded that, because of the purported benefits of PRP administration and the lack of adverse events, further animal and clinical studies should be performed to explore the potential influences of PRP.


Subject(s)
Axons/drug effects , Pain/drug therapy , Platelet-Rich Plasma , Regeneration/drug effects , Wound Healing/drug effects , Animals , Bacterial Infections/drug therapy , Clinical Trials as Topic , Corneal Injuries/drug therapy , Drug Evaluation, Preclinical , Epithelial Cells/drug effects , Fibroblasts/transplantation , Fractures, Bone/drug therapy , Humans , In Vitro Techniques , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/therapeutic use , Ligaments/injuries , Mesenchymal Stem Cell Transplantation , Models, Animal , Neovascularization, Physiologic/drug effects , Platelet-Rich Plasma/chemistry , Tendon Injuries/drug therapy
15.
Wound Repair Regen ; 23(3): 312-7, 2015.
Article in English | MEDLINE | ID: mdl-25801293

ABSTRACT

Pressure ulcers can be initiated by as little as 2 hours of constant pressure on the ski, that blocks blood circulation causing the skin and underlying tissues to die, leading to an open wound that never heals, but continues to grow in diameter and depth, and frequently jeopardizes patients' lives. Despite the application of many diverse techniques, pressure ulcers remain exceptionally difficult to heal because many ulcer elimination techniques have minimal effects, and although other techniques may appear to be effective, the evidence supporting their efficacy is weak. However, increasing evidence indicates that other techniques, such as the application of platelet-rich plasma, vacuum assisted closure, electrical stimulation, and hyperbaric oxygen therapy are effective and should be substituted for the older techniques. This review describes different standard and novel techniques that have been tested for eliminating pressure ulcers and discusses the relative efficacy of these techniques.


Subject(s)
Chronic Disease/therapy , Pressure Ulcer/therapy , Wound Healing , Wounds and Injuries/therapy , Administration, Topical , Anti-Infective Agents/administration & dosage , Bandages , Debridement/methods , Electric Stimulation , Evidence-Based Medicine , Humans , Hyperbaric Oxygenation , Low-Level Light Therapy , Negative-Pressure Wound Therapy , Platelet-Derived Growth Factor/administration & dosage , Platelet-Rich Plasma , Pressure Ulcer/pathology , Transforming Growth Factor beta1/administration & dosage , Treatment Outcome , Wounds and Injuries/pathology
17.
Prog Neurobiol ; 116: 1-12, 2014 May.
Article in English | MEDLINE | ID: mdl-24380784

ABSTRACT

Restoring neurological function to a damaged peripheral nerve separated by a gap requires axon regeneration (1) across the gap, no matter its length, and then (2) through the distal portion of the nerve, regardless of the time between the trauma and repair, and irrespective of animal or patient age. Sensory nerve grafts, the clinical "gold standard", and most alternative techniques for bridging nerve gaps, promote reliable axon regeneration only across nerve gaps <2cm in length, and with few axons regenerating when nerve repairs are performed >2 months post-trauma or for patients >20 years of age. Three novel nerve repair techniques are discussed that induce axon regeneration and neurological recovery clinically under conditions where other techniques are ineffective: for nerve gaps up to cm long, repairs performed as late as 3.25 years post-trauma, and for patients up to 58 years old. The mechanisms by which these techniques may work are discussed. Although these techniques provide significant improvements in the extents of axon regeneration and neurological recovery, more extensive and reliable clinical recovery of neurological function is needed and will probably require the simultaneous application of multiple techniques.


Subject(s)
Axons , Nerve Regeneration , Peripheral Nerve Injuries/therapy , Recovery of Function , Animals , Axons/physiology , Humans , Peripheral Nerve Injuries/physiopathology , Platelet-Rich Plasma , Sensory Receptor Cells/transplantation , Tissue Scaffolds
18.
Mol Neurobiol ; 48(2): 315-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23832571

ABSTRACT

Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.


Subject(s)
Neuralgia/prevention & control , Neuralgia/therapy , Platelet-Rich Plasma/metabolism , Animals , Clinical Trials as Topic , Humans , Stem Cells/cytology
19.
Front Physiol ; 3: 175, 2012.
Article in English | MEDLINE | ID: mdl-22685436

ABSTRACT

We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in the perinuclear region.

20.
Ther Clin Risk Manag ; 8: 185-94, 2012.
Article in English | MEDLINE | ID: mdl-22547938

ABSTRACT

Brain and spinal cord traumas include blunt and penetrating trauma, disease, and required surgery. Such traumas trigger events such as inflammation, infiltration of inflammatory and other cells, oxidative stress, acidification, excitotoxicity, ischemia, and the loss of calcium homeostasis, all of which cause neurotoxicity and neuron death. To prevent trauma-induced neurological deficits and death, each of the many neurotoxic events that occur in parallel or sequentially must be minimized or prevented. Although neuroprotective techniques have been developed that block single neurotoxic events, most provide only limited neuroprotection and are only applied singly. However, because many neurotoxicity triggers arise from common events, an approach for invoking more effective neuroprotection is to apply multiple neuroprotective methods simultaneously before the many neurotoxic triggers and cascades are initiated and become irreversible. This paper first discusses some triggers of neurotoxicity and neuroprotective mechanisms that block them, including hypothermia, alkalinization, and the administration of adenosine. It then examines how the simultaneous application of these techniques provides significantly greater neuroprotection than is provided by any technique alone. The paper also stresses the importance of determining whether the neuroprotection provided by these techniques can be further enhanced by combining them with additional techniques, such as the systemic administration of glucocorticoids. Finally, the paper stresses the absolute critical importance of applying these techniques within the "golden hour" following trauma, before the many neurotoxic events and cascades are manifest and before the neurotoxic cascades become irreversible.

SELECTION OF CITATIONS
SEARCH DETAIL
...