Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Mech Ageing Dev ; 218: 111916, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364983

ABSTRACT

In old age, impaired immunity causes high susceptibility to infections and cancer, higher morbidity and mortality, and poorer vaccination efficiency. Many factors, such as genetics, diet, and lifestyle, impact aging. This study aimed to investigate how immune responses change with age in healthy Dutch and Tanzanian individuals and identify common metabolites associated with an aged immune profile. We performed untargeted metabolomics from plasma to identify age-associated metabolites, and we correlated their concentrations with ex-vivo cytokine production by immune cells, DNA methylation-based epigenetic aging, and telomere length. Innate immune responses were impacted differently by age in Dutch and Tanzanian cohorts. Age-related decline in steroid hormone precursors common in both populations was associated with higher systemic inflammation and lower cytokine responses. Hippurate and 2-phenylacetamide, commonly more abundant in older individuals, were negatively correlated with cytokine responses and telomere length and positively correlated with epigenetic aging. Lastly, we identified several metabolites that might contribute to the stronger decline in innate immunity with age in Tanzanians. The shared metabolomic signatures of the two cohorts suggest common mechanisms of immune aging, revealing metabolites with potential contributions. These findings also reflect genetic or environmental effects on circulating metabolites that modulate immune responses.


Subject(s)
Aging , East African People , European People , Aged , Humans , Cytokines , Immunity, Innate , Metabolome
2.
Nature ; 625(7996): 813-821, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172637

ABSTRACT

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Host Microbial Interactions , Metagenome , Humans , Acetylgalactosamine/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cohort Studies , Computer Simulation , Faecalibacterium prausnitzii/genetics , Gastrointestinal Microbiome/genetics , Genome, Human/genetics , Genotype , Host Microbial Interactions/genetics , In Vitro Techniques , Metagenome/genetics , Multigene Family , Netherlands , Tanzania
3.
Nat Rev Immunol ; 24(4): 250-263, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37770632

ABSTRACT

Vaccination is one of medicine's greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20-50% protection. This trend is also observed for other vaccines, such as bacillus Calmette-Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.


Subject(s)
BCG Vaccine , Vaccination , Humans , Immunologic Factors , Vaccines, Attenuated
4.
J Thromb Haemost ; 22(3): 805-817, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38029856

ABSTRACT

BACKGROUND: Platelets play a key role in hemostasis, inflammation, and cardiovascular diseases. Platelet reactivity is highly variable between individuals. The drivers of this variability in populations from Sub-Saharan Africa remain largely unknown. OBJECTIVES: We aimed to investigate the nongenetic and genetic determinants of platelet reactivity in healthy adults living in a rapidly urbanizing area in Northern Tanzania. METHODS: Platelet activation and reactivity were measured by platelet P-selectin expression and the binding of fibrinogen in unstimulated blood and after ex vivo stimulation with adenosine diphosphate and PAR-1 and PAR-4 ligands. We then analyzed the associations of platelet parameters with host genetic and nongenetic factors, environmental factors, plasma inflammatory markers, and plasma metabolites. RESULTS: Only a few associations were found between platelet reactivity parameters and plasma inflammatory markers and nongenetic host and environmental factors. In contrast, untargeted plasma metabolomics revealed a large number of associations with food-derived metabolites, including phytochemicals that were previously reported to inhibit platelet reactivity. Genome-wide single-nucleotide polymorphism genotyping identified 2 novel single-nucleotide polymorphisms (rs903650 and rs4789332) that were associated with platelet reactivity at the genome-wide level (P < 5 × 10-8) as well as a number of variants in the PAR4 gene (F2RL3) that were associated with PAR4-induced reactivity. CONCLUSION: Our study uncovered factors that determine variation in platelet reactivity in a population in East Africa that is rapidly transitioning to an urban lifestyle, including the importance of genetic ancestry and the gradual abandoning of the traditional East African diet.


Subject(s)
Blood Platelets , Platelet Aggregation , Adult , Humans , Platelet Aggregation/physiology , Tanzania , Blood Platelets/metabolism , Platelet Activation , Receptor, PAR-1/metabolism
5.
Elife ; 122023 08 09.
Article in English | MEDLINE | ID: mdl-37555575

ABSTRACT

Non-communicable diseases (NCDs) are rising rapidly in urbanizing populations in sub-Saharan Africa. Assessment of inflammatory and metabolic characteristics of a urbanizing African population and the comparison with populations outside Africa could provide insight in the pathophysiology of the rapidly increasing epidemic of NCDs, including the role of environmental and dietary changes. Using a proteomic plasma profiling approach comprising 92 inflammation-related molecules, we examined differences in the inflammatory proteome in healthy Tanzanian and healthy Dutch adults. We show that healthy Tanzanians display a pro-inflammatory phenotype compared to Dutch subjects, with enhanced activity of the Wnt/ß-catenin signalling pathway and higher concentrations of different metabolic regulators such as 4E-BP1 and fibroblast growth factor 21. Among the Tanzanian volunteers, food-derived metabolites were identified as an important driver of variation in inflammation-related molecules, emphasizing the potential importance of lifestyle changes. These findings endorse the importance of the current dietary transition and the inclusion of underrepresented populations in systems immunology studies.


Subject(s)
East African People , European People , Inflammation , Proteome , Humans , Africa South of the Sahara/epidemiology , Noncommunicable Diseases/epidemiology , Proteomics
6.
J Thromb Haemost ; 20(5): 1089-1105, 2022 05.
Article in English | MEDLINE | ID: mdl-35102686

ABSTRACT

BACKGROUND: Geographic variability in coagulation across populations and their determinants are poorly understood. OBJECTIVE: To compare thrombin (TG) and plasmin (PG) generation parameters between healthy Tanzanian and Dutch individuals, and to study associations with inflammation and different genetic, host and environmental factors. METHODS: TG and PG parameters were measured in 313 Tanzanians of African descent living in Tanzania and 392 Dutch of European descent living in the Netherlands and related to results of a dietary questionnaire, circulating inflammatory markers, genotyping, and plasma metabolomics. RESULTS: Tanzanians exhibited an enhanced TG and PG capacity, compared to Dutch participants. A higher proportion of Tanzanians had a TG value in the upper quartile with a PG value in the lower/middle quartile, suggesting a relative pro-coagulant state. Tanzanians also displayed an increased normalized thrombomodulin sensitivity ratio, suggesting reduced sensitivity to protein C. In Tanzanians, PG parameters (lag time and TTP) were associated with seasonality and food-derived plasma metabolites. The Tanzanians had higher concentrations of pro-inflammatory cytokines, which correlated strongly with TG and PG parameters. There was limited overlap in genetic variation associated with TG and PG parameters between the two cohorts. Pathway analysis of genetic variants in the Tanzanian cohort revealed multiple immune pathways that were enriched with TG and PG traits, confirming the importance of co-regulation between coagulation and inflammation. CONCLUSIONS: Tanzanians have an enhanced TG and PG potential compared to Dutch individuals, which may relate to differences in inflammation, genetics and diet. These observations highlight the importance of better understanding of the geographic variability in coagulation across populations.


Subject(s)
Fibrinolysin , Thrombin , Adult , Black People , Blood Coagulation/genetics , Blood Coagulation Tests , Fibrinolysin/metabolism , Humans , Inflammation/genetics , Netherlands , Tanzania , Thrombin/metabolism , White People
7.
Am J Hum Genet ; 109(3): 471-485, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35167808

ABSTRACT

Humans exhibit remarkable interindividual and interpopulation immune response variability upon microbial challenges. Cytokines play a vital role in regulating inflammation and immune responses, but dysregulation of cytokine responses has been implicated in different disease states. Host genetic factors were previously shown to significantly impact cytokine response heterogeneity mainly in European-based studies, but it is unclear whether these findings are transferable to non-European individuals. Here, we aimed to identify genetic variants modulating cytokine responses in healthy adults of East African ancestry from Tanzania. We leveraged both cytokine and genetic data and performed genome-wide cytokine quantitative trait loci (cQTLs) mapping. The results were compared with another cohort of healthy adults of Western European ancestry via direct overlap and functional enrichment analyses. We also performed meta-analyses to identify cQTLs with congruent effect direction in both populations. In the Tanzanians, cQTL mapping identified 80 independent suggestive loci and one genome-wide significant locus (TBC1D22A) at chromosome 22; SNP rs12169244 was associated with IL-1b release after Salmonella enteritidis stimulation. Remarkably, the identified cQTLs varied significantly when compared to the European cohort, and there was a very limited percentage of overlap (1.6% to 1.9%). We further observed ancestry-specific pathways regulating induced cytokine responses, and there was significant enrichment of the interferon pathway specifically in the Tanzanians. Furthermore, contrary to the Europeans, genetic variants in the TLR10-TLR1-TLR6 locus showed no effect on cytokine response. Our data reveal both ancestry-specific effects of genetic variants and pathways on cytokine response heterogeneity, hence arguing for the importance of initiatives to include diverse populations into genomics research.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Adult , Cytokines/genetics , Genetic Predisposition to Disease , Genomics , Humans , Polymorphism, Single Nucleotide/genetics , Tanzania
10.
Nat Commun ; 12(1): 4845, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381036

ABSTRACT

The human gut microbiota is increasingly recognized as an important factor in modulating innate and adaptive immunity through release of ligands and metabolites that translocate into circulation. Urbanizing African populations harbor large intestinal diversity due to a range of lifestyles, providing the necessary variation to gauge immunomodulatory factors. Here, we uncover a gradient of intestinal microbial compositions from rural through urban Tanzanian, towards European samples, manifested both in relative abundance and genomic variation observed in stool metagenomics. The rural population shows increased Bacteroidetes, led by Prevotella copri, but also presence of fungi. Measured ex vivo cytokine responses were significantly associated with 34 immunomodulatory microbes, which have a larger impact on circulating metabolites than non-significant microbes. Pathway effects on cytokines, notably TNF-α and IFN-γ, differential metabolome analysis and enzyme copy number enrichment converge on histidine and arginine metabolism as potential immunomodulatory pathways mediated by Bifidobacterium longum and Akkermansia muciniphila.


Subject(s)
Cytokines/immunology , Gastrointestinal Microbiome/physiology , Rural Population , Urban Population , Adult , Arginine/metabolism , Bacteria/immunology , Bacteria/isolation & purification , Bacteria/metabolism , Diet , Female , Gastrointestinal Microbiome/immunology , Histidine/metabolism , Humans , Immunomodulation , Male , Metabolic Networks and Pathways , Metabolome/immunology , Socioeconomic Factors , Tanzania , Urbanization
11.
Nat Immunol ; 22(3): 287-300, 2021 03.
Article in English | MEDLINE | ID: mdl-33574617

ABSTRACT

Sub-Saharan Africa currently experiences an unprecedented wave of urbanization, which has important consequences for health and disease patterns. This study aimed to investigate and integrate the immune and metabolic consequences of rural or urban lifestyles and the role of nutritional changes associated with urban living. In a cohort of 323 healthy Tanzanians, urban as compared to rural living was associated with a pro-inflammatory immune phenotype, both at the transcript and protein levels. We identified different food-derived and endogenous circulating metabolites accounting for these differences. Serum from urban dwellers induced reprogramming of innate immune cells with higher tumor necrosis factor production upon microbial re-stimulation in an in vitro model of trained immunity. These data demonstrate important shifts toward an inflammatory phenotype associated with an urban lifestyle and provide new insights into the underlying dietary and metabolic factors, which may affect disease epidemiology in sub-Sahara African countries.


Subject(s)
Cytokines/blood , Diet, Healthy , Energy Metabolism , Immunity, Innate , Inflammation Mediators/blood , Rural Health , Urban Health , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cytokines/genetics , Energy Metabolism/genetics , Female , Humans , Immunity, Innate/genetics , Male , Metabolome , Middle Aged , Nutritional Status , Nutritive Value , Risk Reduction Behavior , Seasons , Tanzania , Transcriptome , Tumor Necrosis Factor-alpha/blood , Urbanization , Young Adult
12.
J Immunol ; 204(1): 122-127, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31767782

ABSTRACT

Platelets are known to have immunomodulatory properties. They modulate immune responses of leukocytes against various pathogens, including fungi. Candida albicans can cause systemic infection in immunocompromised individuals that is associated with a high mortality and morbidity. In the current study, we explored the role of platelets in antifungal host defense against C. albicans PBMCs were stimulated with heat-killed (HK) C. albicans in the presence or absence of isolated washed platelets. Cytokines were quantified from culture supernatants by ELISA. Inhibition of platelet receptors and cytokine pathways were used to elucidate the mechanisms involved in platelet-leukocyte interaction. In the presence of platelets, PBMCs produced less IFN-γ upon stimulation with HK C. albicans This effect was dependent on the direct contact between platelets and leukocytes but was independent of the platelet GPIb and P-selectin receptors. The attenuation of IFN-γ was not a direct effect on T cells but was dependent on the presence of APC and T cells. Platelets did not modulate the Th-1-polarizing cytokines IL-12 and IL-18. The addition of PG (PGE2) further diminished IFN-γ levels in PBMCs, and supplementation of cells with nonsteroidal anti-inflammatory drugs was able to restore the level of IFN-γ. Overall, we show that modulation of the Th1 response against C. albicans by platelets is dependent on PGs.


Subject(s)
Blood Platelets/immunology , Candida albicans/drug effects , Interferon-gamma/biosynthesis , Leukocytes, Mononuclear/drug effects , Prostaglandins/immunology , Candida albicans/immunology , Healthy Volunteers , Humans , Interferon-gamma/immunology , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/immunology
13.
PLoS Pathog ; 15(3): e1007500, 2019 03.
Article in English | MEDLINE | ID: mdl-30849118

ABSTRACT

Thrombocytopenia and platelet dysfunction are commonly observed in patients with dengue virus (DENV) infection and may contribute to complications such as bleeding and plasma leakage. The etiology of dengue-associated thrombocytopenia is multifactorial and includes increased platelet clearance. The binding of the coagulation protein von Willebrand factor (VWF) to the platelet membrane and removal of sialic acid (desialylation) are two well-known mechanisms of platelet clearance, but whether these conditions also contribute to thrombocytopenia in dengue infection is unknown. In two observational cohort studies in Bandung and Jepara, Indonesia, we show that adult patients with dengue not only had higher plasma concentrations of plasma VWF antigen and active VWF, but that circulating platelets had also bound more VWF to their membrane. The amount of platelet-VWF binding correlated well with platelet count. Furthermore, sialic acid levels in dengue patients were significantly reduced as assessed by the binding of Sambucus nigra lectin (SNA) and Maackia amurensis lectin II (MAL-II) to platelets. Sialic acid on the platelet membrane is neuraminidase-labile, but dengue virus has no known neuraminidase activity. Indeed, no detectable activity of neuraminidase was present in plasma of dengue patients and no desialylation was found of plasma transferrin. Platelet sialylation was also not altered by in vitro exposure of platelets to DENV nonstructural protein 1 or cultured DENV. In contrast, induction of binding of VWF to glycoprotein 1b on platelets using the VWF-activating protein ristocetin resulted in the removal of platelet sialic acid by translocation of platelet neuraminidase to the platelet surface. The neuraminidase inhibitor oseltamivir reduced VWF-induced platelet desialylation. Our data demonstrate that excessive binding of VWF to platelets in dengue results in neuraminidase-mediated platelet desialylation and platelet clearance. Oseltamivir might be a novel treatment option for severe thrombocytopenia in dengue infection.


Subject(s)
Blood Platelets/metabolism , N-Acetylneuraminic Acid/metabolism , von Willebrand Factor/physiology , Adolescent , Adult , Blood Coagulation Factors , Blood Platelets/physiology , Cohort Studies , Dengue/metabolism , Female , Fibrinogen , Humans , Indonesia , Kinetics , Male , Myelin and Lymphocyte-Associated Proteolipid Proteins , Neuraminidase/metabolism , Plant Lectins , Platelet Membrane Glycoproteins/metabolism , Ribosome Inactivating Proteins , Thrombocytopenia , Young Adult , von Willebrand Factor/metabolism
14.
Infect Immun ; 86(10)2018 10.
Article in English | MEDLINE | ID: mdl-30037798

ABSTRACT

Platelets are increasingly recognized to play a role in the complications of Streptococcus pneumoniae infections. S. pneumoniae expresses neuraminidases, which may alter glycans on the platelet surface. In the present study, we investigated the capability of pneumococcal neuraminidase A (NanA) to remove sialic acid (desialylation) from the platelet surface, the consequences for the platelet activation status and reactivity, and the ability of neuraminidase inhibitors to prevent these effects. Our results show that soluble NanA induces platelet desialylation. Whereas desialylation itself did not induce platelet activation (P-selectin expression and platelet fibrinogen binding), platelets became hyperreactive to ex vivo stimulation by ADP and cross-linked collagen-related peptide (CRP-XL). Platelet aggregation with leukocytes also increased. These processes were dependent on the ADP pathway, as inhibitors of the pathway (apyrase and ticagrelor) abrogated platelet hyperreactivity. Inhibition of NanA-induced platelet desialylation by neuraminidase inhibitors (e.g., oseltamivir acid) also prevented the platelet effects of NanA. Collectively, our findings show that soluble NanA can desialylate platelets, leading to platelet hyperreactivity, which can be prevented by neuraminidase inhibitors.


Subject(s)
Adenosine Diphosphate/metabolism , Blood Platelets/metabolism , N-Acetylneuraminic Acid/metabolism , Neuraminidase/metabolism , Pneumococcal Infections/blood , Streptococcus pneumoniae/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Humans , Neuraminidase/genetics , Platelet Aggregation , Pneumococcal Infections/metabolism , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics
15.
Tuberculosis (Edinb) ; 111: 86-93, 2018 07.
Article in English | MEDLINE | ID: mdl-30029921

ABSTRACT

The immune effects of platelets and platelet-leukocyte aggregation are increasingly recognized. We studied the occurrence of platelet-monocyte aggregation (PMA) in patients with pulmonary tuberculosis (TB), the processes underlying PMA and consequences for cytokine responses. In a cross-sectional study involving 65 Tanzanian TB patients in different phases of treatment and 29 healthy controls, TB patients had a significantly higher PMA. This increased PMA in TB patients was associated with increased monocyte CCR5, CD16 expression and PF4, but not with increased membrane-expressed or soluble P-selectin expression. These findings were confirmed in vitro: whereas incubation of whole blood with Mycobacterium tuberculosis (Mtb) did not activate platelets, monocytes became activated with higher CD11b, CD16 and CCR5 expression, but this was independent of platelet-monocyte interaction. Still, platelets had an anti-inflammatory effect on cytokine responses as peripheral blood mononuclear cells (PBMC) incubated with Mtb in the presence of platelets produced less interleukin (IL)-1ß, tumor necrosis factor-α, IL-6 and interferon-γ and more IL-10. In conclusion, increased PMA during TB infection is caused by monocyte and not platelet activation. By counteracting the Mtb-induced pro-inflammatory leukocyte response, platelets may protect against excessive tissue damage, but may also compromise the production of protective cytokines, such as IFNÆ´ and TNFα.


Subject(s)
Blood Platelets/metabolism , Cell Adhesion , Cytokines/metabolism , Inflammation Mediators/metabolism , Monocytes/metabolism , Mycobacterium tuberculosis/metabolism , Tuberculosis, Pulmonary/metabolism , Adult , Biomarkers/blood , Blood Platelets/immunology , Blood Platelets/microbiology , Case-Control Studies , Cells, Cultured , Cross-Sectional Studies , Cytokines/blood , Cytokines/immunology , Female , Humans , Inflammation Mediators/blood , Inflammation Mediators/immunology , Male , Middle Aged , Monocytes/immunology , Monocytes/microbiology , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Platelet Activation , Signal Transduction , Tanzania , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology
16.
Viral Immunol ; 30(8): 576-581, 2017 10.
Article in English | MEDLINE | ID: mdl-28783457

ABSTRACT

Detection of respiratory syncytial virus (RSV) in blood, including mononuclear leukocytes and organs other than the lung, suggests that RSV disseminates outside the respiratory tract. In this study, the role of platelets in host defense against RSV was explored using an in vitro model. Platelets, also produced in the lungs, are increasingly recognized as an important part of host immune responses and may therefore play a role in modulating lung infections and clearing RSV viremia. In human peripheral blood mononuclear cells (PBMCs), platelets significantly reduced RSV infection of monocytes, monocyte activation, and interferon (IFN)α/γ production. Direct contact of platelets with PBMCs modulated the immune response when stimulated with Poly I:C (TLR3) and R848 (TLR7/8), Toll-like receptors (TLRs) involved in the recognition of RSV, and led to an enhanced IFNα/γ production. This suggested that reduction in RSV infection of monocytes in the presence of platelets could be IFN dependent; blocking IFNα receptor 2 (IFNAR2) on PBMCs indeed increased RSV infection. In addition, IFNs were not detected when PBMCs were stimulated with inactivated RSV, indicating that infection of monocytes was important for the induction of IFN responses and that the platelet-mediated reduced RSV infection was responsible for the decreased IFN levels. Furthermore, platelets could internalize RSV reducing the amount of viral particles that could infect monocytes. Our findings suggest that platelets may play a role in the clearance of RSV viremia by internalizing viral particles and by enhancing type I IFN production from PBMCs, which subsequently exert antiviral effect on host cells.


Subject(s)
Blood Platelets/immunology , Immunity, Innate , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , HeLa Cells , Humans , Interferon-alpha/analysis , Interferon-gamma/analysis , Leukocytes, Mononuclear/virology , Lung/virology , Monocytes/virology , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL