Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202400618, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837891

ABSTRACT

Metal-free graphitic carbon nitrides are on the rise as polymer photocatalysts under visible light illumination, taking shares in a range of promising photocatalytic reactions, including water splitting. Their simple synthesis and facile structural modification afford them exceptional tunability, enabling the creation of photocatalysts with distinct properties. While their metal-free nature marks a significant step towards environmental sustainability, the high energy consumption required to produce carbon nitride photocatalysts remains a substantial barrier to their widespread adoption. Furthermore, the process of condensation at approximately 550°C typically results in solid yields of less than 15%, significantly challenging their economic viability. Here, we report on lowering manufacturing conditions of carbon nitride photocatalysts whilst enhancing photocatalytic activity by introducing binaphthyl diamine as a structural mediator. At 450°C in 2 hours, carbon nitride photocatalyst shows a lower bandgap and enables visible light induced hydrogen evolution (194 µmol h-1) comparable to benchmark carbon nitride photocatalysts.

2.
Adv Sci (Weinh) ; 11(16): e2310196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350734

ABSTRACT

Developing high-performance carbonaceous anode materials for sodium-ion batteries (SIBs) is still a grand quest for a more sustainable future of energy storage. Introducing sulfur within a carbon framework is one of the most promising attempts toward the development of highly efficient anode materials. Herein, a microporous sulfur-rich carbon anode obtained from a liquid sulfur-containing oligomer is introduced. The sodium storage mechanism shifts from surface-controlled to diffusion-controlled at higher synthesis temperatures. The different storage mechanisms and electrode performances are found to be independent of the bare electrode material's interplanar spacing. Therefore, these differences are attributed to an increased microporosity and a thiophene-rich chemical environment. The combination of these properties enables extending the plateau region to higher potential and achieving reversible overpotential sodium storage. Moreover, in-operando small-angle X-ray scattering (SAXS) reveals reversible electron density variations within the pore structure, in good agreement with the pore-filling sodium storage mechanism occurring in hard carbons (HCs). Eventually, the depicted framework will enable the design of high-performance anode materials for sodium-ion batteries with competitive energy density.

3.
Nanoscale Adv ; 4(15): 3136-3141, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36132808

ABSTRACT

Polymerization of multifunctional thiol-ene molecules is attractive as a proof of concept in photopolymerization, yet the formation of a bead structure is highly restricted. This manuscript will show graphitic carbon nitride based liquid-liquid printing and subsequent photopolymerization to form thiol-ene polymer beads with extreme simplicity and potential scalability.

4.
Beilstein J Org Chem ; 17: 1323-1334, 2021.
Article in English | MEDLINE | ID: mdl-34136012

ABSTRACT

Hydrogels are a special class of crosslinked hydrophilic polymers with a high water content through their porous structures. Post-modifications of hydrogels propose an attractive platform so that a variety of fresh functions, which are not arising from initial monomers, could be accessible on a parental network. Photoinduced post-modification of hydrogels by embedding semiconductor nanosheets would be of high interest and novelty. Here, a metal-free semiconductor graphitic carbon nitride (g-CN)-embedded hydrogel as an initial network was synthesized via redox-couple initiation under dark conditions. Post-photomodification of so-formed hydrogel, thanks to the photoactivity of the embedded g-CN nanosheets, was exemplified in two scenarios. The synthesis of 'hydrophobic hydrogel' is reported and its application in delayed cation delivery was investigated. Furthermore, pores of the initial hydrogel were modified by the formation of a secondary polymer network. Such a facile and straightforward synthetic protocol to manufacture functional soft materials will be of high interest in near future by the means of catalysis and agricultural delivery.

5.
ACS Appl Mater Interfaces ; 13(3): 4643-4651, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33463148

ABSTRACT

Charge interaction-driven jamming of nanoparticle monolayers at the oil-water interface can be employed as a method to mold liquids into tailored stable 3D liquid objects. Here, 3D liquid objects are fabricated via a combination of biocompatible aqueous poly(vinyl sulfonic acid, sodium salt) solution and a colloidal dispersion of highly fluorescent organo-modified graphitic carbon nitride (g-C3N4) in edible sunflower oil. The as-formed liquid object shows stability in a broad pH range, as well as flexible pathways for efficient exchange of molecules at the liquid-liquid interphase, which allows for photodegradation of rhodamine B at the interface via visible light irradiation that also enables an encoding concept. The g-C3N4-based liquid objects point toward various applications, for example, all-liquid biphasic photocatalysis, artificial compartmentalized systems, liquid-liquid printing, or bioprinting.

6.
Macromol Rapid Commun ; 42(8): e2000433, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33103292

ABSTRACT

Aqueous multiphase systems have attracted a lot of interest recently espeically due to target applications in the biomedical field, cosmetics, and food. In turn, water-in-water Pickering emulsions are investigated frequently. In here, graphitic carbon nitride (g-CN) stabilized water-in-water Pickering emulsions are fabricated via the dextran and poly(ethylene glycol)-based aqueous two-phase system. Five different derivatives of g-CN as the Pickering stabilizer are described and the effect of g-CN concentration on droplet sizes is investigated. Stable emulsions (up to 16 weeks) are obtained that can be broken on purpose via various approaches, including dilution, surfactant addition, and most notably light irradiation. The novel approach of water-in-water emulsion stabilization via g-CN opens up considerable advances in aqueous multiphase systems and may also introduce photocatalytic properties.


Subject(s)
Graphite , Water , Emulsions , Nitrogen Compounds , Surface-Active Agents
7.
Adv Colloid Interface Sci ; 283: 102229, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32795670

ABSTRACT

The metal-free, polymeric semiconductor graphitic carbon nitride (g-CN) family is an emerging class of materials and has striking advantages compared to other semiconductors, i.e. ease of tunability, low cost and synthesis from abundant precursors in a chemical environment. Efforts have been done to improve the properties of g-CN, such as photocatalytic efficiency, designing novel composites, processability and scalability towards discovering novel applications as a remedy for the problems that we are facing today. Despite the fact that the main efforts to improve g-CN come from a catalysis perspective, many fundamental possibilities arise from the special colloidal properties of carbon nitride particles, from synthesis to applications. This review will display how typical colloid chemistry tools can be employed to make 'better g-CNs' and how up to now overseen properties can be levered by integrating a colloid and interface perspective into materials chemistry. Establishing a knowledge on the origins of colloidal behavior of g-CN will be the core of the review.

8.
Polymers (Basel) ; 12(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32708024

ABSTRACT

High potential of emission chemistry has been visualized in many fields, from sensors and imaging to displays. In general, conjugated polymers are the top rankers for such chemistry, despite the fact that they bring solubility problems, high expenses, toxicity and demanding synthesis. Metal-free polymeric semiconductor graphitic carbon nitride (g-CN) has been an attractive candidate for visible light-induced photocatalysis, and its emission properties have been optimized and explored recently. Herein, we present modified g-CN nanoparticles as organodispersible conjugated polymer materials to be utilized in a heterophase emission systems. The injection of a g-CN organic dispersion in aqueous polymer solution not only provides retention of the shape by Pickering stabilization of g-CN, but high intensity emission is also obtained. The heterophase all-liquid emission display can be further modified by the addition of simple conjugated organic molecules to the initial g-CN dispersion, which provides a platform for multicolor emission. We believe that such shape-tailored and stabilized liquid-liquid multicolor emission systems are intriguing for sensing, displays and photonics.

9.
Small ; 16(32): e2001180, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32614519

ABSTRACT

Graphitic carbon nitride (g-CN) has been utilized as a heterogeneous catalyst, but is usually not very well dispersible. The amphiphilic character of g-CN can be altered by surface modifications of g-CN nanopowders. Introducing hydrophilicity or hydrophobicity is a promising avenue for producing advanced emulsion systems. In this study, a special surface-modified g-CN is used to form stable Pickering emulsions. Using a PDMS-based microfluidic device designed for stable production of both single and double emulsions, it is shown that surface-modified g-CNs allow the manufacture of unconventionally stable and precise Pickering emulsions. Shell thickness of the double emulsions is varied to emphasize the robustness of the device and also to demonstrate the extraordinary stabilization brought by the surface-modified carbon nitride used in this study. Due to the electrostatic stabilization also in the oil phase, double emulsions are centered. Finally, when produced from polymerizable styrene, hollow polymer microparticles are formed with precise and tunable sizes, where g-CN is utilized as the only stabilizer and photoinitiator.

10.
Macromolecules ; 52(13): 4989-4996, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31543549

ABSTRACT

Metal-free graphitic carbon nitride (g-CN) has attracted significant attention recently due to its multiple applications, such as photocatalysis, energy storage and conversion, and biomaterials, albeit formation of g-CN films is challenging. Herein, a "grafting to" route to graft polymer brushes onto g-CN via visible-light irradiation is described. Afterward, g-CN/polymer films can be obtained through spin coating on glass substrates. As such, the present material provides an improved process toward further application of g-CN in thin films. Moreover, an improved dispersibility in organic solvent was realized after grafting and functional groups (such as epoxides) were introduced to g-CN. Subsequently, the epoxy groups were utilized for further functionalization to adjust the surface polarity.

11.
Langmuir ; 35(34): 11141-11149, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31373496

ABSTRACT

Compartmentalized hydrogels constitute a significant research area, for example, for catalytic and biomedical applications. As presented here, a generic method is used for compartmentalization of supramolecular hydrogels by using water-in-water emulsions based on aqueous two-phase systems. By forming the supramolecular hydrogel throughout the continuous phase of all-aqueous emulsions, distinct, microcompartmentalized materials were created. The basis for the presented compartmentalized water-in-water hydrogels is polydopamine particle-stabilized water-in-water emulsions from dextran and poly(ethylene glycol) (PEG). Addition of α-cyclodextrin (α-CD) led to supramolecular complexation with PEG and subsequent hydrogel formation showing no signs of creaming. Due to the supramolecular nature of the compartmentalized hydrogels, selective network cleavage could be induced via competing guest addition, while keeping the emulsion substructure intact.

12.
Beilstein J Nanotechnol ; 10: 1316-1323, 2019.
Article in English | MEDLINE | ID: mdl-31293868

ABSTRACT

A controllable ion transport including ion selectivity and ion rectification across nanochannels or porous membranes is of great importance because of potential applications ranging from biosensing to energy conversion. Here, a nanofluidic ion diode was realized by modifying carbon nitride nanotubes with different molecules yielding an asymmetric surface charge that allows for ion rectification. With the advantages of low-cost, thermal and mechanical robustness, and simple fabrication process, carbon nitride nanotubes with ion rectification have the potential to be used in salinity-gradient energy conversion and ion sensor systems.

13.
J Am Chem Soc ; 141(31): 12322-12328, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31310113

ABSTRACT

Effective, solution-processable designs of interfacial electron-transporting layers (ETLs) or hole-blocking layers are promising tools in modern electronic devices, e.g., to improve the performance, cost, and stability of perovskite-based solar cells. Herein, we introduce a facile synthetic route of thiazole-modified carbon nitride with 1.5 nm thick nanosheets which can be processed to a homogeneous, metal-free ETL for inverted perovskite solar cells. We show that thiazole-modified carbon nitride enables electronic interface enhancement via suppression of charge recombination, achieving 1.09 V in Voc and a rise to 20.17 mA/cm2 in Jsc. Hence, this report presents the successful implementation of a carbon-nitride-based structure to boost charge extraction from the perovskite absorber toward the electron transport layer in p-i-n devices.

14.
ChemSusChem ; 12(12): 2628-2636, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-30994965

ABSTRACT

The need for more sustainable products and processes has led to the use of new methodologies with low carbon footprints. In this work, an efficient tandem process is demonstrated for the liquid-phase catalytic upgrading of lignocellulosic biomass-derived γ-valerolactone (GVL) with trioxane (Tx) to α-methylene-γ-valerolactone (MeGVL) in flow system using Cs-loaded hierarchical beta zeolites. The introduction of mesopores along with the presence of basic sites of mild strength leads to MeGVL productivity 20 times higher than with the bulk beta zeolite, reaching 0.325 mmol min-1 gcat -1 for the best-performing catalyst, the highest value reported so far. This catalyst proves stable upon reuse in consecutive cycles, which is ascribed to the partial depletion of the basic sites. The obtained MeGVL is subjected to visible-light-induced polymerization, resulting in a final material with similar properties to the widely used poly(methyl) methacrylate.

15.
ACS Appl Mater Interfaces ; 11(9): 9462-9469, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30746936

ABSTRACT

Herein, the convenient visible light-induced photografting of hydroxyl ethyl methacrylate onto graphitic carbon nitride (g-CN) is described, leading to well-dispersible g-CN-based precursor polymers that can be injected. Mixing with citric acid as the cross-linker and heating leads to stable thermoset coatings. The process is versatile and easy to perform, leading to g-CN-based coatings. Moreover, the coating can be further functionalized/modified via grafting of other polymer chains, and the resulting structure is useful as photocatalytic surface or as photoelectrode.

16.
Macromol Rapid Commun ; 40(4): e1800712, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30500100

ABSTRACT

Extremely compressible hydrogels are fabricated in one pot via sulfonic-acid-modified graphitic carbon nitride (g-CN-AHPA) as a visible light photoinitiator and reinforcer. The hydrogels show unusual compressibility upon applied stress up to 12 MPa, presenting temporary physical deformation, and remain undamaged after stress removal despite their high water content (90 wt%). Cyclic compressibility proves the fatigue resistance of the covalently and electrostatically reinforced system that possesses tissue adhesive properties, shock resistance, cut resistance, and little to no toxicity.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nitriles/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemical synthesis , Molecular Structure , Static Electricity
17.
J Am Chem Soc ; 140(50): 17532-17537, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30463410

ABSTRACT

Covalent modification of phenyl-modified carbon nitride with vinylthiazole groups via visible light induced grafting is reported. Modified structures express negative charge migration to the thiazole edges while the carbon nitride sheet remains positively charged in organic solutions. Such a phenomenon provides electrostatic stabilization of modified carbon nitride particles in organic media leading to highly organodispersible and colloidally stable carbon nitrides. The resulting structures can be homogeneously dispersed in organic solvents and can be cast to transparent films. The usefulness of such a processable colloidal carbon nitride building block is exemplified here by its high luminescence and inkjet printing of films.

18.
Soft Matter ; 14(14): 2655-2664, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29561058

ABSTRACT

High concentration formulations of graphitic carbon nitride (g-CN) are utilized as photoinitiator and reinforcer for hydrogels. In order to integrate significant amounts of g-CN, ethylene glycol (EG) is employed as a co-solvent for the gel formation, which enables stable dispersion of up to 4 wt% g-CN. Afterwards, EG can be removed easily via solvent exchange to afford pure hydrogels. The diverse gels possess remarkably high storage moduli (up to 650 kPa for gels and 720 kPa for hydrogels) and compression moduli (up to 9.45 MPa for 4 wt% g-CN EG gel and 3.45 MPa for 4 wt% g-CN hydrogel). Full recovery without energy loss is observed for at least 20 cycles. Moreover, gel formation can be performed in a spatially controlled way utilizing photomasks with desired shapes. Therefore, the suggested method enables formation of hybrid gels by optical lithography with outstanding mechanical properties very similar to natural cartilage and tendon, and opens up opportunities for future applications in photocatalysis, additive manufacturing of biomedical implants and coating materials.

19.
Polymers (Basel) ; 10(6)2018 May 23.
Article in English | MEDLINE | ID: mdl-30966610

ABSTRACT

Supramolecular hydrogels play a prominent role in contemporary research of hydrophilic polymers. Especially, hydrogels based on α-cyclodextrin/poly(ethylene glycol) (α-CD/PEG) complexation and crystal formation are studied frequently. Here, the effect of double hydrophilic block copolymers (DHBCs) on α-CD/PEG hydrogel properties is investigated. Therefore, a novel DHBC, namely poly(N-vinylpyrrolidone)-b-poly(oligo ethylene glycol methacrylate) (PVP-b-POEGMA), was synthesized via a combination of reversible deactivation radical polymerization and modular conjugation methods. In the next step, hydrogel formation was studied after α-CD addition. Interestingly, DHBC-based hydrogels showed a significant response to thermal history. Heating of the gels to different temperatures led to different mechanical properties after cooling to ambient temperature, i.e., gels with mechanical properties similar to the initial gels or weak flowing gels were obtained. Thus, the hydrogels showed thermoadaptive behavior, which might be an interesting property for future applications in sensing.

20.
Langmuir ; 33(38): 9897-9906, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28845993

ABSTRACT

A facile route to synthesize hydrophilically or hydrophobically grafted graphitic carbon nitride (g-CN) is reported. For this purpose, functionalized olefinic molecules with a low polymerization tendency are utilized for grafting onto the surface to preserve the features of g-CN while improving its dispersibility. One-pot, visible light-induced grafting yields highly dispersible g-CNs either in aqueous or organic media. Moreover, functional groups such as amines can be introduced, which yields pH-dependent dispersibility in aqueous media. Compared with unfunctionalized g-CN, low sonication times are sufficient to redisperse g-CN. In addition, because of increased dispersion stability, higher amounts of functionalized g-CN can be dispersed (up to 10% in aqueous dispersion and 2% in organic dispersion) when compared to unfunctionalized g-CN.

SELECTION OF CITATIONS
SEARCH DETAIL