Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Molecules ; 28(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049768

ABSTRACT

Glycogen phosphorylase (GP) is a key regulator of glucose levels and, with that, an important target for the discovery of novel treatments against type 2 diabetes. ß-d-Glucopyranosyl derivatives have provided some of the most potent GP inhibitors discovered to date. In this regard, C-ß-d-glucopyranosyl azole type inhibitors proved to be particularly effective, with 2- and 4-ß-d-glucopyranosyl imidazoles among the most potent designed to date. His377 backbone C=O hydrogen bonding and ion-ion interactions of the protonated imidazole with Asp283 from the 280s loop, stabilizing the inactive state, were proposed as crucial to the observed potencies. Towards further exploring these features, 4-amino-3-(ß-d-glucopyranosyl)-5-phenyl-1H-pyrazole (3) and 3-(ß-d-glucopyranosyl)-4-guanidino-5-phenyl-1H-pyrazole (4) were designed and synthesized with the potential to exploit similar interactions. Binding assay experiments against rabbit muscle GPb revealed 3 as a moderate inhibitor (IC50 = 565 µM), but 4 displayed no inhibition at 625 µM concentration. Towards understanding the observed inhibitions, docking and post-docking molecular mechanics-generalized Born surface area (MM-GBSA) binding free energy calculations were performed, together with Monte Carlo and density functional theory (DFT) calculations on the free unbound ligands. The computations revealed that while 3 was predicted to hydrogen bond with His377 C=O in its favoured tautomeric state, the interactions with Asp283 were not direct and there were no ion-ion interactions; for 4, the most stable tautomer did not have the His377 backbone C=O interaction and while ion-ion interactions and direct hydrogen bonding with Asp283 were predicted, the conformational strain and entropy loss of the ligand in the bound state was significant. The importance of consideration of tautomeric states and ligand strain for glucose analogues in the confined space of the catalytic site with the 280s loop in the closed position was highlighted.


Subject(s)
Glycogen Phosphorylase , Pyrazoles , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/metabolism , Density Functional Theory , Molecular Docking Simulation , Monte Carlo Method , Molecular Conformation , Glucose/analogs & derivatives , Glucose/chemistry , Glucose/metabolism , Glucose/pharmacology , Diabetes Mellitus, Type 2
2.
Molecules ; 27(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36431884

ABSTRACT

Glycosylidene-spiro-morpholin(on)es are scarcely described skeletons in the literature. In this work, we have systematically explored the synthetic routes towards such morpholinones based on the reactions of O-peracylated hept-2-ulopyranosonamide derivatives of D-gluco and D-galacto configuration. Koenigs-Knorr type glycosylation of 2-chloroethanol, allylic and propargylic alcohols by (glyculosylbromide)onamides furnished the expected glycosides. The 2-chloroethyl glycosides were ring closed to the corresponding spiro-morpholinones by treatment with K2CO3. The (allyl glyculosid)onamides gave diastereomeric mixtures of spiro-5-hydroxymorpholinones by ozonolysis and 5-iodomethylmorpholinones under iodonium ion mediated conditions. The ozonolytic method has not yet been known for the construction of morpholine rings, therefore, it was also extended to O-allyl mandelamide. The 5-hydroxymorpholinones were subjected to oxidation and acid catalyzed elimination reactions to give the corresponding morpholine-3,5-dions and 5,6-didehydro-morpholin-3-ones, respectively. Base induced elimination of the 5-iodomethylmorpholinones gave 5-methyl-2H-1,4-oxazin-3(4H)-ones. O-Acyl protecting groups of all of the above compounds were removed under Zemplén conditions. Some of the D-gluco configured unprotected compounds were tested as inhibitors of glycogen phosphorylase, but showed no significant effect.


Subject(s)
Glycogen Phosphorylase , Morpholines , Glycosides , Glycosylation
3.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920838

ABSTRACT

A current trend in the quest for new therapies for complex, multifactorial diseases, such as diabetes mellitus (DM), is to find dual or even multi-target inhibitors. In DM, the sodium dependent glucose cotransporter 2 (SGLT2) in the kidneys and the glycogen phosphorylase (GP) in the liver are validated targets. Several (ß-D-glucopyranosylaryl)methyl (het)arene type compounds, called gliflozins, are marketed drugs that target SGLT2. For GP, low nanomolar glucose analogue inhibitors exist. The purpose of this study was to identify dual acting compounds which inhibit both SGLTs and GP. To this end, we have extended the structure-activity relationships of SGLT2 and GP inhibitors to scarcely known (C-ß-D-glucopyranosylhetaryl)methyl arene type compounds and studied several (C-ß-D-glucopyranosylhetaryl)arene type GP inhibitors against SGLT. New compounds, such as 5-arylmethyl-3-(ß-D-glucopyranosyl)-1,2,4-oxadiazoles, 5-arylmethyl-2-(ß-D-glucopyranosyl)-1,3,4-oxadiazoles, 4-arylmethyl-2-(ß-D-glucopyranosyl)pyrimidines and 4(5)-benzyl-2-(ß-D-glucopyranosyl)imidazole were prepared by adapting our previous synthetic methods. None of the studied compounds exhibited cytotoxicity and all of them were assayed for their SGLT1 and 2 inhibitory potentials in a SGLT-overexpressing TSA201 cell system. GP inhibition was also determined by known methods. Several newly synthesized (C-ß-D-glucopyranosylhetaryl)methyl arene derivatives had low micromolar SGLT2 inhibitory activity; however, none of these compounds inhibited GP. On the other hand, several (C-ß-D-glucopyranosylhetaryl)arene type GP inhibitor compounds with low micromolar efficacy against SGLT2 were identified. The best dual inhibitor, 2-(ß-D-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole, had a Ki of 31 nM for GP and IC50 of 3.5 µM for SGLT2. This first example of an SGLT-GP dual inhibitor can prospectively be developed into even more efficient dual-target compounds with potential applications in future antidiabetic therapy.

4.
Bioorg Med Chem ; 28(1): 115196, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31767404

ABSTRACT

C-Glucopyranosyl imidazoles, thiazoles, and an N-glucopyranosyl tetrazole were assessed in vitro and ex vivo for their inhibitory efficiency against isoforms of glycogen phosphorylase (GP; a validated pharmacological target for the development of anti-hyperglycaemic agents). Imidazoles proved to be more potent inhibitors than the corresponding thiazoles or the tetrazole. The most potent derivative has a 2-naphthyl substituent, a Ki value of 3.2 µM for hepatic glycogen phosphorylase, displaying also 60% inhibition of GP activity in HepG2 cells, compared to control vehicle treated cells, at 100 µM. X-Ray crystallography studies of the protein - inhibitor complexes revealed the importance of the architecture of inhibitor associated hydrogen bonds or sulfur σ-hole bond interactions to Asn284 OD1, offering new insights to structure-based design efforts. Moreover, while the 2-glucopyranosyl-tetrazole seems to bind differently from the corresponding 1,2,3-triazole compound, the two inhibitors are equipotent.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase, Liver Form/antagonists & inhibitors , Imidazoles/pharmacology , Tetrazoles/pharmacology , Thiazoles/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Phosphorylase, Liver Form/metabolism , Hep G2 Cells , Humans , Hydrogen/chemistry , Imidazoles/chemical synthesis , Imidazoles/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Sulfur/chemistry , Tetrazoles/chemical synthesis , Tetrazoles/chemistry , Thiazoles/chemical synthesis , Thiazoles/chemistry
5.
ACS Chem Biol ; 14(7): 1460-1470, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31243960

ABSTRACT

Several C-ß-d-glucopyranosyl azoles have recently been uncovered as among the most potent glycogen phosphorylase (GP) catalytic site inhibitors discovered to date. Toward further exploring their translational potential, ex vivo experiments have been performed for their effectiveness in reduction of glycogenolysis in hepatocytes. New compounds for these experiments were predicted in silico where, for the first time, effective ranking of GP catalytic site inhibitor potencies using the molecular mechanics-generalized Born surface area (MM-GBSA) method has been demonstrated. For a congeneric training set of 27 ligands, excellent statistics in terms of Pearson (RP) and Spearman (RS) correlations (both 0.98), predictive index (PI = 0.99), and area under the receiver operating characteristic curve (AU-ROC = 0.99) for predicted versus experimental binding affinities were obtained, with ligand tautomeric/ionization states additionally considered using density functional theory (DFT). Seven 2-aryl-4(5)-(ß-d-glucopyranosyl)-imidazoles and 2-aryl-4-(ß-d-glucopyranosyl)-thiazoles were subsequently synthesized, and kinetics experiments against rabbit muscle GPb revealed new potent inhibitors with best Ki values in the low micromolar range (5c = 1.97 µM; 13b = 4.58 µM). Ten C-ß-d-glucopyranosyl azoles were then tested ex vivo in mouse primary hepatocytes. Four of these (5a-c and 9d) demonstrated significant reduction of glucagon stimulated glycogenolysis (IC50 = 30-60 µM). Structural and predicted physicochemical properties associated with their effectiveness were analyzed with permeability related parameters identified as crucial factors. The most effective ligand series 5 contained an imidazole ring, and the calculated pKa (Epik: 6.2; Jaguar 5.5) for protonated imidazole suggests that cellular permeation through the neutral state is favored, while within the cell, there is predicted more favorable binding to GP in the protonated form.


Subject(s)
Azoles/pharmacology , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Glycogenolysis/drug effects , Hepatocytes/drug effects , Animals , Azoles/chemistry , Caco-2 Cells , Drug Design , Enzyme Inhibitors/chemistry , Glycogen Phosphorylase/metabolism , Hepatocytes/metabolism , Humans , Models, Molecular , Rabbits , Structure-Activity Relationship
6.
J Agric Food Chem ; 67(24): 6884-6891, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31135156

ABSTRACT

Glucopyranosylidene-spiro-benzo[ b][1,4]oxazinones were obtained via the corresponding 2-nitrophenyl glycosides obtained by two methods: (a) AgOTf-promoted glycosylation of 2-nitrophenol derivatives by O-perbenzoylated methyl (α-d-gluculopyranosyl bromide)heptonate or (b) Mitsunobu-type reactions of O-perbenzoylated methyl (α-d-gluculopyranose)heptonate with bulky 2-nitrophenols in the presence of diethyl azodicarboxylate (DEAD) and PPh3. Catalytic hydrogenation (H2-Pd/C) or partial reduction (e.g., H2-Pd/C, pyridine) of the 2-nitro groups led to spiro-benzo[ b][1,4]oxazinones and spiro-benzo[ b][1,4]-4-hydroxyoxazinones by spontaneous ring closure of the intermediate 2-aminophenyl or 2-hydroxylamino glycosides, respectively. The analogous 2-aminophenyl thioglycosides, prepared by reactions of O-perbenzoylated methyl (α-d-gluculopyranosyl bromide)heptonate with 2-aminothiophenols, were cyclized in m-xylene at reflux temperature to the corresponding spiro-benzo[ b][1,4]thiazinones. O-Debenzoylation was effected by Zemplén transesterification in both series. Spiro-configurations were determined by NMR and electronic circular dichroism time-dependent density functional theory (ECD-TDDFT) methods. Inhibition assays with rabbit muscle glycogen phosphorylase b showed (1' R)-spiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]oxazin-3(4 H)-one} and (1' R)-spiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]thiazin-3(4 H)-one} to be the most efficient inhibitors (27 and 28% inhibition at 625 µM, respectively). Plant growth tests with white mustard and garden cress indicated no effect except for (1' R)-4-hydroxyspiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]oxazin-3(4 H)-one} with the latter plant to show modest inhibition of germination (95% relative to control).


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Lepidium sativum/drug effects , Mustard Plant/drug effects , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Animals , Enzyme Inhibitors/chemistry , Esterification , Germination/drug effects , Glycogen Phosphorylase/chemistry , Lepidium sativum/growth & development , Magnetic Resonance Spectroscopy , Molecular Structure , Mustard Plant/growth & development , Rabbits , Spiro Compounds/chemistry , Structure-Activity Relationship
7.
Anticancer Res ; 39(5): 2415-2427, 2019 May.
Article in English | MEDLINE | ID: mdl-31092434

ABSTRACT

AIM: The purpose of this study was to develop a folate receptor-targeted 68Ga-labeled agent for the detection of cancer cells in mouse models of ovarian cancer by dual positron-emission tomography (PET) and magnetic resonance imaging (MRI). Moreover, we aimed to develop a controlled biopolymer-based chemistry that enables linking metal-binding (here Ga-68) chelators. MATERIALS AND METHODS: The nanoparticle (NP) agent was created by self-assembling of folic acid-modified polyglutamic acid and chelator-modified chitosan followed by radiolabeling with 68Ga (III) ions (68Ga-NODAGA-FA). The structure of modified biopolymers was characterized by spectroscopy. Particle size and mobility were determined. RESULTS: Significant selective binding of NPs was established in vitro using folate receptor-positive KB and - negative MDA-MB-231 cell lines. In vivo tumor uptake of folate-targeted 68Ga3+-radiolabeled NPs was tested using subcutaneous tumor-bearing CB17 SCID mice models. PET/MR dual modalities showed high tumor uptake with 6.5 tumor-to-muscle ratio and NP localization. CONCLUSION: In vivo results supporting the preliminary in vitro tests demonstrated considerably higher 68Ga-NODAGA-FA nanoparticle accumulation in KB tumors than in MDA-MB-231 tumors, thereby confirming the folate receptor-mediated uptake of this novel potential PET imaging agent.


Subject(s)
Folate Receptor 1/isolation & purification , Gallium Radioisotopes/chemistry , Nanoparticles/chemistry , Ovarian Neoplasms/diagnostic imaging , Acetates/chemistry , Animals , Chelating Agents/chemistry , Chitosan/chemical synthesis , Chitosan/chemistry , Chitosan/therapeutic use , Disease Models, Animal , Female , Folate Receptor 1/chemistry , Folic Acid/chemistry , Gallium Radioisotopes/therapeutic use , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Magnetic Resonance Imaging/methods , Mice , Nanoparticles/therapeutic use , Ovarian Neoplasms/pathology , Polyglutamic Acid/chemistry , Positron-Emission Tomography/methods
8.
Molecules ; 23(3)2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543771

ABSTRACT

The aim of the present study was to broaden the structure-activity relationships of C- and N-ß-d-glucopyranosyl azole type inhibitors of glycogen phosphorylase. 1-Aryl-4-ß-d-gluco-pyranosyl-1,2,3-triazoles were prepared by copper catalyzed azide-alkyne cycloadditions between O-perbenzylated or O-peracetylated ß-d-glucopyranosyl ethynes and aryl azides. 1-ß-d-Gluco-pyranosyl-4-phenyl imidazole was obtained in a glycosylation of 4(5)-phenylimidazole with O-peracetylated α-d-glucopyranosyl bromide. C-ß-d-Glucopyranosyl-N-substituted-tetrazoles were synthesized by alkylation/arylation of O-perbenzoylated 5-ß-d-glucopyranosyl-tetrazole or from a 2,6-anhydroheptose tosylhydrazone and arenediazonium salts. 5-Substituted tetrazoles were glycosylated by O-peracetylated α-d-glucopyranosyl bromide to give N-ß-d-glucopyranosyl-C-substituted-tetrazoles. Standard deprotections gave test compounds which were assayed against rabbit muscle glycogen phosphorylase b. Most of the compounds proved inactive, the best inhibitor was 2-ß-d-glucopyranosyl-5-phenyltetrazole (IC50 600 µM). These studies extended the structure-activity relationships of ß-d-glucopyranosyl azole type inhibitors and revealed the extreme sensitivity of such type of inhibitors towards the structure of the azole moiety.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Glycogen Phosphorylase, Muscle Form/antagonists & inhibitors , Triazoles/chemical synthesis , Animals , Cycloaddition Reaction , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Structure , Rabbits , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology
9.
Eur J Med Chem ; 147: 266-278, 2018 Mar 10.
Article in English | MEDLINE | ID: mdl-29453094

ABSTRACT

3-(ß-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles have been revealed as an effective scaffold for the development of potent glycogen phosphorylase (GP) inhibitors but with the potency very sensitive to the nature of the alkyl/aryl 5-substituent (Kun et al., Eur. J. Med. Chem. 2014, 76, 567). For a training set of these ligands, quantum mechanics-polarized ligand docking (QM-PLD) demonstrated good potential to identify larger differences in potencies (predictive index PI = 0.82) and potent inhibitors with Ki's < 10 µM (AU-ROC = 0.86). Accordingly, in silico screening of 2335 new analogues exploiting the ZINC docking database was performed and nine predicted candidates selected for synthesis. The compounds were prepared in O-perbenzoylated forms by either ring transformation of 5-ß-d-glucopyranosyl tetrazole by N-benzyl-arenecarboximidoyl chlorides, ring closure of C-(ß-d-glucopyranosyl)formamidrazone with aroyl chlorides, or that of N-(ß-d-glucopyranosylcarbonyl)arenethiocarboxamides by hydrazine, followed by deprotections. Kinetics experiments against rabbit muscle GPb (rmGPb) and human liver GPa (hlGPa) revealed five compounds as potent low µM inhibitors with three of these on the submicromolar range for rmGPa. X-ray crystallographic analysis sourced the potency to a combination of favorable interactions from the 1,2,4-triazole and suitable aryl substituents in the GP catalytic site. The compounds also revealed promising calculated pharmacokinetic profiles.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Quantum Theory , Triazoles/pharmacology , Caco-2 Cells , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Phosphorylase/metabolism , Humans , Kinetics , Ligands , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
10.
Bioorg Chem ; 77: 485-493, 2018 04.
Article in English | MEDLINE | ID: mdl-29454281

ABSTRACT

Human liver glycogen phosphorylase (hlGP), a key enzyme in glycogen metabolism, is a valid pharmaceutical target for the development of new anti-hyperglycaemic agents for type 2 diabetes. Inhibitor discovery studies have focused on the active site and in particular on glucopyranose based compounds with a ß-1 substituent long enough to exploit interactions with a cavity adjacent to the active site, termed the ß-pocket. Recently, C-ß-d-glucopyranosyl imidazoles and 1, 2, 4-triazoles proved to be the best known glucose derived inhibitors of hlGP. Here we probe the ß-pocket by studying the inhibitory effect of six different groups at the para position of 3-(ß-d-glucopyranosyl phenyl)-5-phenyl-, 1, 2, 4-triazoles in hlGP by kinetics and X-ray crystallography. The most bioactive compound was the one with an amine substituent to show a Ki value of 0.43 µM. Structural studies have revealed the physicochemical diversity of the ß-pocket providing information for future rational inhibitor design studies.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Liver/enzymology , Triazoles/pharmacology , Animals , Catalytic Domain/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Phosphorylase/isolation & purification , Glycogen Phosphorylase/metabolism , Humans , Kinetics , Models, Molecular , Molecular Structure , Rabbits , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
11.
Br J Pharmacol ; 175(2): 301-319, 2018 01.
Article in English | MEDLINE | ID: mdl-28409826

ABSTRACT

BACKGROUND AND PURPOSE: Glycogen phosphorylase (GP) is the key enzyme for glycogen degradation. GP inhibitors (GPi-s) are glucose lowering agents that cause the accumulation of glucose in the liver as glycogen. Glycogen metabolism has implications in beta cell function. Glycogen degradation can maintain cellular glucose levels, which feeds into catabolism to maintain insulin secretion, and elevated glycogen degradation levels contribute to glucotoxicity. The purpose of this study was to assess whether influencing glycogen metabolism in beta cells by GPi-s affects the function of these cells. EXPERIMENTAL APPROACH: The effects of structurally different GPi-s were investigated on MIN6 insulinoma cells and in a mouse model of diabetes. KEY RESULTS: GPi treatment increased glycogen content and, consequently, the surface area of glycogen in MIN6 cells. Furthermore, GPi treatment induced insulin receptor ß (InsRß), Akt and p70S6K phosphorylation, as well as pancreatic and duodenal homeobox 1(PDX1) and insulin expression. In line with these findings, GPi-s enhanced non-stimulated and glucose-stimulated insulin secretion in MIN6 cells. The InsRß was shown to co-localize with glycogen particles as confirmed by in silico screening, where components of InsR signalling were identified as glycogen-bound proteins. GPi-s also activated the pathway of insulin secretion, indicated by enhanced glycolysis, mitochondrial oxidation and calcium signalling. Finally, GPi-s increased the size of islets of Langerhans and improved glucose-induced insulin release in mice. CONCLUSION AND IMPLICATIONS: These data suggest that GPi-s also target beta cells and can be repurposed as agents to preserve beta cell function or even ameliorate beta cell dysfunction in different forms of diabetes. LINKED ARTICLES: This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.


Subject(s)
Glycogen Phosphorylase/antagonists & inhibitors , Insulin-Secreting Cells/drug effects , Animals , Calcium Signaling/drug effects , Cells, Cultured , Glycogen/metabolism , Glycolysis/drug effects , Insulin/metabolism , Islets of Langerhans/drug effects , Male , Mice , Mitochondria/metabolism , Receptor, Insulin/metabolism
12.
Molecules ; 22(10)2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29048398

ABSTRACT

Reactions of O-peracylated C-(1-bromo-ß-d-glucopyranosyl)formamides with thioamides furnished the corresponding glucopyranosylidene-spiro-thiazolin-4-one. While O-debenzoylations under a variety of conditions resulted in decomposition, during O-deacetylations the addition of MeOH to the thiazolinone moiety was observed, and with EtOH and water similar adducts were isolated or detected. The structure and stereochemistry of the new compounds were established by means of NMR and electronic circular dichroism (ECD) data supported by time-dependent density functional theory ECD (TDDFT-ECD) calculations. TDDFT-ECD calculations could efficiently distinguish the proposed epimeric products having different absolute configuration in the spiro heterocyclic ring.


Subject(s)
Monosaccharides/chemistry , Thiazolidines/chemistry , Circular Dichroism , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Stereoisomerism
13.
J Struct Biol ; 199(1): 57-67, 2017 07.
Article in English | MEDLINE | ID: mdl-28483603

ABSTRACT

3-(C-Glucopyranosyl)-5aryl-1,2,4-triazoles with an aryl moiety larger than phenyl have been shown to have strong inhibitory potency (Ki values in the range of upper nM) for human liver glycogen phosphorylase (hlGP), a pharmacologically relevant target for diabetes type 2. In this study we investigate in a comparative manner the inhibitory effect of the above triazoles and their respective imidazoles on hlGPa. Kinetic studies show that the imidazole derivatives are 6-8 times more potent than their corresponding triazoles. We also seek to answer how the type of the aryl moiety affects the potency in hlGPa, and by determination of the crystal structure of rmGPb in complex with the triazole derivatives the structural basis of their inhibitory efficacy is also elucidated. Our studies revealed that the van der Waals interactions between the aryl moiety and residues in a hydrophobic pocket within the active site are mainly responsible for the variations in the potency of these inhibitors.


Subject(s)
Glycogen Phosphorylase/antagonists & inhibitors , Triazoles/pharmacology , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Imidazoles/pharmacology , Kinetics , Liver/enzymology
14.
Am J Cancer Res ; 7(3): 715-726, 2017.
Article in English | MEDLINE | ID: mdl-28401023

ABSTRACT

This study describes formation of an actively and passively targeted, water-soluble drug delivery system (DDS) which contains doxorubicin (DOX). The system comprises two biocompatible and biodegradable polymers: poly-γ-glutamic acid (PGA) and chitosan (CH). Self-assembly of these biopolymers in aqueous medium results stable nanoparticles (NPs) with a hydrodynamic size of 80-150 nm and slightly negative surface charge. Folic acid (FA) was used as targeting agent bonded to the polyanion (PA) and also to the surface of the NPs. The NP's physical stability, active targeting effect, cellular toxicity, release profile and in vivo anti-tumor efficacy were investigated. It was found that the targeted, self-assembled nanoparticles are stable at 4°C for several months, cause better in vitro toxicity effect on folate receptor (FR) positive cell lines than the doxorubicin or the non-targeted nanosystem and based on its release profile it is expected, that the nanosystem will remain stable during the circulation in the body. Pharmacodynamic studies demonstrated that the DOX-loaded nanoparticles can deliver greater tumor growth inhibition than the free drug molecules and the liposomal compound, with less general toxicity. It was observed that the overall survival is the main benefit of the biopolymer based drug delivery system.

15.
Chem Rev ; 117(3): 1687-1764, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28121130

ABSTRACT

This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.


Subject(s)
Hydrocarbons/chemistry , Hypoglycemic Agents/pharmacology , Glycosylation
16.
Eur J Med Chem ; 123: 737-745, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27522507

ABSTRACT

C-ß-d-Glucopyranosyl pyrrole derivatives were prepared in the reactions of pyrrole, 2-, and 3-aryl-pyrroles with O-peracetylated ß-d-glucopyranosyl trichloroacetimidate, while 2-(ß-d-glucopyranosyl) indole was obtained by a cross coupling of O-perbenzylated ß-d-glucopyranosyl acetylene with N-tosyl-2-iodoaniline followed by spontaneous ring closure. An improved synthesis of O-perbenzoylated 2-(ß-d-glucopyranosyl) imidazoles was achieved by reacting C-glucopyranosyl formimidates with α-aminoketones. The deprotected compounds were assayed with isoforms of glycogen phosphorylase (GP) to show no activity of the pyrroles against rabbit muscle GPb. The imidazoles proved to be the best known glucose derived inhibitors of not only the muscle enzymes (both a and b) but also of the pharmacologically relevant human liver GPa (Ki = 156 and 26 nM for the 4(5)-phenyl and -(2-naphthyl) derivatives, respectively). An X-ray crystallographic study of the rmGPb-imidazole complexes revealed structural features of the strong binding, and also allowed to explain the absence of inhibition for the pyrrole derivatives.


Subject(s)
Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Liver/enzymology , Pyrroles/chemistry , Pyrroles/pharmacology , Animals , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/metabolism , Humans , Kinetics , Models, Molecular , Protein Conformation , Rabbits , Structure-Activity Relationship
17.
ACS Med Chem Lett ; 6(12): 1215-9, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26713107

ABSTRACT

Inhibition of glycogen phosphorylases may lead to pharmacological treatments of diseases in which glycogen metabolism plays an important role: first of all in diabetes, but also in cardiovascular and tumorous disorders. C-(ß-d-Glucopyranosyl) isoxazole, pyrazole, thiazole, and imidazole type compounds were synthesized, and the latter showed the strongest inhibition against rabbit muscle glycogen phosphorylase b. Most efficient was 2-(ß-d-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole (11b, K i = 31 nM) representing the best nanomolar glucose derived inhibitor of the enzyme.

18.
Carbohydr Res ; 399: 38-48, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25081322

ABSTRACT

New derivatives of d-xylose with aglycons of the most efficient glucose derived inhibitors of glycogen phosphorylase were synthesized to explore the specificity of the enzyme towards the structure of the sugar part of the molecules. Thus, 2-(ß-d-xylopyranosyl)benzimidazole and 3-substituted-5-(ß-d-xylopyranosyl)-1,2,4-triazoles were obtained in multistep procedures from O-perbenzoylated ß-d-xylopyranosyl cyanide. Cycloadditions of nitrile-oxides and O-peracetylated exo-xylal obtained from the corresponding ß-d-xylopyranosyl cyanide furnished xylopyranosylidene-spiro-isoxazoline derivatives. Oxidative ring closure of O-peracetylated ß-d-xylopyranosyl-thiohydroximates prepared from 1-thio-ß-d-xylopyranose and nitrile-oxides gave xylopyranosylidene-spiro-oxathiazoles. The fully deprotected test compounds were assayed against rabbit muscle glycogen phosphorylase b to show moderate inhibition for 3-(2-naphthyl)-5-(ß-d-xylopyranosyl)-1,2,4-triazole (IC50=0.9mM) only.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase, Muscle Form/antagonists & inhibitors , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/pharmacology , Muscle, Skeletal/enzymology , Spiro Compounds/pharmacology , Xylose/analogs & derivatives , Animals , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Phosphorylase, Muscle Form/metabolism , Heterocyclic Compounds/chemistry , Molecular Structure , Rabbits , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , Xylose/chemistry , Xylose/pharmacology
19.
Eur J Med Chem ; 76: 567-79, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24608000

ABSTRACT

O-Perbenzoylated 5-(ß-D-glucopyranosyl)tetrazole was reacted with N-benzyl carboximidoyl chlorides to give the corresponding 4-benzyl-3-(ß-D-glucopyranosyl)-5-substituted-1,2,4-triazoles. Removal of the O-benzoyl and N-benzyl protecting groups by base catalysed transesterification and catalytic hydrogenation, respectively, furnished a series of 3-(ß-D-glucopyranosyl)-5-substituted-1,2,4-triazoles with aliphatic, mono- and bicyclic aromatic, and heterocyclic substituents in the 5-position. Enzyme kinetic studies revealed these compounds to inhibit rabbit muscle glycogen phosphorylase b: best inhibitors were the 5-(4-aminophenyl)- (Ki 0.67 µM) and the 5-(2-naphthyl)-substituted (Ki 0.41 µM) derivatives. This study uncovered the C-glucopyranosyl-1,2,4-triazoles as a novel skeleton for nanomolar inhibition of glycogen phosphorylase.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Triazoles/chemical synthesis , Triazoles/pharmacology , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Esterification , Glycogen Phosphorylase/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Triazoles/chemistry
20.
Carbohydr Res ; 346(12): 1427-38, 2011 Sep 06.
Article in English | MEDLINE | ID: mdl-21470596

ABSTRACT

5-(O-Perbenzoylated-ß-D-glucopyranosyl)tetrazole was obtained from O-perbenzoylated-ß-D-glucopyranosyl cyanide by Bu(3)SnN(3) or Me(3)SiN(3)-Bu(2)SnO. This tetrazole was transformed into 5-ethynyl- as well as 5-chloromethyl-2-(O-perbenzoylated-ß-D-glucopyranosyl)-1,3,4-oxadiazoles by acylation with propiolic acid-DCC or chloroacetyl chloride, respectively. The chloromethyl oxadiazole gave the corresponding azidomethyl derivative on treatment with NaN(3). These compounds were reacted with several alkynes and azides under Cu(I) catalysed cycloaddition conditions to give, after removal of the protecting groups by the Zemplén protocol, ß-D-glucopyranosyl-1,3,4-oxadiazolyl-1,2,3-triazole, ß-D-glucopyranosyl-1,2,3-triazolyl-1,3,4-oxadiazole, and ß-D-glucopyranosyl-1,3,4-oxadiazolylmethyl-1,2,3-triazole type compounds. 5-Phenyltetrazole was also transformed under the above conditions into a series of aryl-1,3,4-oxadiazolyl-1,2,3-triazoles, aryl-1,2,3-triazolyl-1,3,4-oxadiazoles, and aryl-1,3,4-oxadiazolylmethyl-1,2,3-triazoles. The new compounds were assayed against rabbit muscle glycogen phosphorylase b and the best inhibitors had inhibition constants in the upper micromolar range (2-phenyl-5-[1-(ß-D-glucopyranosyl)-1,2,3-triazol-4-yl]-1,3,4-oxadiazole 36: K(i)=854µM, 2-(ß-D-glucopyranosyl)-5-[1-(naphthalen-2-yl)-1,2,3-triazol-4-yl]-1,3,4-oxadiazole 47: K(i)=745µM).


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/chemical synthesis , Glycoconjugates/chemical synthesis , Glycogen Phosphorylase, Muscle Form/antagonists & inhibitors , Phosphorylase b/antagonists & inhibitors , Alkynes/chemistry , Animals , Azides/chemistry , Catalysis , Diabetes Mellitus, Type 2/physiopathology , Enzyme Inhibitors/pharmacology , Glucose/chemistry , Glycoconjugates/pharmacology , Glycogen Phosphorylase, Muscle Form/metabolism , Humans , Kinetics , Oxadiazoles/chemistry , Phosphorylase b/metabolism , Propionates/chemistry , Rabbits , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL