Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Article in English | MEDLINE | ID: mdl-39001817

ABSTRACT

Sickle cell disease (SCD) affects two-thirds of African and Indian children. Understanding the molecular mechanisms contributing to oxidative stress may be useful for therapeutic development in SCD. We evaluated plasma elemental levels of Indian SCD patients, trait and healthy controls (n=10/per group) via ICP-MS. Additionally, erythrocyte metabolomics of Indian SCD and healthy (n=5/per group) was carried out using LC-MS mass-spectrometry. Followed by assessment of antioxidant defence enzymes namely glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in erythrocytes and plasma of Indian SCD patients (n=31) compared to trait (n=8) and healthy (n=9). In SCD plasma an elevated plasma 24Mg, 44Ca, 66Zn, 208Pb, 39K and reduced 57Fe, 77Se, 85Rb levels indicating higher hemolysis and anemia. Erythrocyte metabolome of SCD patients clustered separately from heathy revealing 135 significantly deregulated metabolic features including trimethyllysine, pyroglutamate, glutathione, aminolevulinate, and D-glutamine indicating oxidative stress and membrane fragility. Repressed GR, SOD, and CAT activities were observed in SCD patients of which GR and CAT activities did not change under hypoxia. These findings lead to the hypothesis that SCD-associated metabolic deregulations and a shift to ATP-consuming aberrant γ-glutamyl cycle leads to anemia, dehydration, oxidative stress and hemolysis driving the biomechanical pathophysiology of erythrocyte of SCD patients.

2.
Biochemistry ; 63(14): 1738-1751, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38975628

ABSTRACT

Over the past two decades, the utilization of protein cages has witnessed exponential growth driven by their extensive applications in biotechnology and therapeutics. In the context of the recent Covid-19 pandemic, protein-cage-based scaffolds played a pivotal role in vaccine development. Beyond vaccines, these protein cages have proven valuable in diverse drug delivery applications thanks to their distinctive architecture and structural stability. Among the various types of protein cages, ferritin-based cages have taken the lead in drug delivery applications. This is primarily attributed to their ease of production, exceptional thermal stability, and nontoxic nature. While ferritin-based cages are commonly employed in anticancer drug delivery and contrast agent delivery, their efficacy in malarial drug delivery had not been explored until this study. In this investigation, several antimalarial drugs were encapsulated within horse spleen ferritin, and the binding and loading processes were validated through both experimental and computational techniques. The data unequivocally demonstrate the facile incorporation of antimalarial drugs into ferritin without disrupting its three-dimensional structure. Computational docking and molecular dynamics simulations were employed to pinpoint the precise location of the drug binding site within ferritin. Subsequent efficacy testing on Plasmodium revealed that the developed nanoconjugate, comprising the drug-ferritin conjugate, exhibited significant effectiveness in eradicating the parasite. In conclusion, the findings strongly indicate that ferritin-based carrier systems hold tremendous promise for the future of antimalarial drug delivery, offering high selectivity and limited side effects.


Subject(s)
Antimalarials , Ferritins , Ferritins/chemistry , Ferritins/metabolism , Antimalarials/chemistry , Antimalarials/pharmacology , Animals , Horses , Drug Delivery Systems/methods , Malaria/drug therapy , Molecular Docking Simulation , Molecular Dynamics Simulation , Humans , Spleen/metabolism , Plasmodium falciparum/drug effects
4.
Sci Rep ; 14(1): 13755, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877065

ABSTRACT

Achieving fast and precise initialization of qubits is a critical requirement for the successful operation of quantum computers. The combination of engineered environments with all-microwave techniques has recently emerged as a promising approach for the reset of superconducting quantum devices. In this work, we experimentally demonstrate the utilization of a single-junction quantum-circuit refrigerator (QCR) for an expeditious removal of several excitations from a transmon qubit. The QCR is indirectly coupled to the transmon through a resonator in the dispersive regime, constituting a carefully engineered environmental spectrum for the transmon. Using single-shot readout, we observe excitation stabilization times down to roughly 500 ns, a 20-fold speedup with QCR and a simultaneous two-tone drive addressing the e-f and f0-g1 transitions of the system. Our results are obtained at a 48-mK fridge temperature and without postselection, fully capturing the advantage of the protocol for the short-time dynamics and the drive-induced detrimental asymptotic behavior in the presence of relatively hot other baths of the transmon. We validate our results with a detailed Liouvillian model truncated up to the three-excitation subspace, from which we estimate the performance of the protocol in optimized scenarios, such as cold transmon baths and fine-tuned driving frequencies. These results pave the way for optimized reset of quantum-electric devices using engineered environments and for dissipation-engineered state preparation.

5.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673806

ABSTRACT

We have recently reported that transcription factor Runx3 is required for pulmonary generation of CD8+ cytotoxic T lymphocytes (CTLs) that play a crucial role in the clearance of influenza A virus (IAV). To understand the underlying mechanisms, we determined the effects of Runx3 knockout (KO) on CD8+ T cell local expansion and phenotypes using an inducible general Runx3 KO mouse model. We found that in contrast to the lungs, Runx3 general KO promoted enlargement of lung-draining mediastinal lymph node (mLN) and enhanced CD8+ and CD4+ T cell expansion during H1N1 IAV infection. We further found that Runx3 deficiency greatly inhibited core 2 O-glycosylation of selectin ligand CD43 on activated CD8+ T cells but minimally affected the cell surface expression of CD43, activation markers (CD44 and CD69) and cell adhesion molecules (CD11a and CD54). Runx3 KO had a minor effect on lung effector CD8+ T cell death by IAV infection. Our findings indicate that Runx3 differently regulates CD8+ T cell expansion in mLNs and lungs by H1N1 IAV infection. Runx3 is required for CD43 core 2 O-glycosylation on activated CD8+ T cells, and the involved Runx3 signal pathway may mediate CD8+ T cell phenotype for pulmonary generation of CTLs.


Subject(s)
CD8-Positive T-Lymphocytes , Core Binding Factor Alpha 3 Subunit , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Glycosylation , Influenza A Virus, H1N1 Subtype/immunology , Leukosialin/metabolism , Lung/virology , Lung/metabolism , Lung/immunology , Lung/pathology , Lymph Nodes/metabolism , Lymph Nodes/immunology , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology
6.
Commun Chem ; 7(1): 73, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565709

ABSTRACT

Post-synthetic surgical editing enables synthesizing diverse molecules from a common scaffold. Editing carbohydrates by inserting a foreign glycan is still a far-reaching goal for synthetic chemists. In this study, a one-pot-three-step chemical approach was employed to edit glycoconjugates. It is comprised of three steps: the first is a 'cut' step, cleaving one of the interglycosidic bonds and producing an intermediate that could be intercepted with 4-mercaptotoluene; second step activates the thiotolyl glycoside in the presence of an aglycon containing an orthogonally activatable ethynylcycloxyl carbonate moiety; and the third step involves 'stitching' by activating the carbonate donor. The cut-insert stitch-editing reaction (CIStER) is demonstrated by inserting branched and linear arabinans reminiscent of M. tuberculosis cell wall from the same designer trimannoside. Glycosylating an activated hydroxyacid (serinyl, steroidal, and lipid) after cutting the interglycosidic bond and stitching in the presence of base extendes the CIStER approach to the synthesis of glycohybrids.

7.
Addict Sci Clin Pract ; 19(1): 16, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491559

ABSTRACT

BACKGROUND: The feasibility of precision smoking treatment in socioeconomically disadvantaged communities has not been studied. METHODS: Participants in the Southern Community Cohort Study who smoked daily were invited to join a pilot randomized controlled trial of three smoking cessation interventions: guideline-based care (GBC), GBC plus nicotine metabolism-informed care (MIC), and GBC plus counseling guided by a polygenic risk score (PRS) for lung cancer. Feasibility was assessed by rates of study enrollment, engagement, and retention, targeting > 70% for each. Using logistic regression, we also assessed whether feasibility varied by age, sex, race, income, education, and attitudes toward precision smoking treatment. RESULTS: Of 92 eligible individuals (79.3% Black; 68.2% with household income < $15,000), 67 (72.8%; 95% CI 63.0-80.9%) enrolled and were randomized. Of these, 58 (86.6%; 95% CI 76.4-92.8%) engaged with the intervention, and of these engaged participants, 43 (74.1%; 95% CI 61.6-83.7%) were retained at 6-month follow-up. Conditional on enrollment, older age was associated with lower engagement (OR 0.83, 95% CI 0.73-0.95, p = 0.008). Conditional on engagement, retention was significantly lower in the PRS arm than in the GBC arm (OR 0.18, 95% CI 0.03-1.00, p = 0.050). No other selection effects were observed. CONCLUSIONS: Genetically informed precision smoking cessation interventions are feasible in socioeconomically disadvantaged communities, exhibiting high enrollment, engagement, and retention irrespective of race, sex, income, education, or attitudes toward precision smoking treatment. Future smoking cessation interventions in this population should take steps to engage older people and to sustain participation in interventions that include genetic risk counseling. TRIAL REGISTRATION: ClinicalTrials.gov No. NCT03521141, Registered 27 April 2018, https://www. CLINICALTRIALS: gov/study/NCT03521141.


Subject(s)
Smoking , Tobacco Smoking , Aged , Humans , Cohort Studies , Feasibility Studies , Pilot Projects , Smoking/epidemiology , Smoking/therapy , Male , Female
8.
bioRxiv ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38496604

ABSTRACT

Previous studies demonstrated that Leptospira biflexa, a saprophytic species, triggers innate immune responses in the host during early infection. This raised the question of whether these responses could suppress a subsequent challenge with pathogenic Leptospira. We inoculated C3H/HeJ mice with a single or a double dose of L. biflexa before challenge with a pathogenic serovar, L. interrogans serovar Copenhageni FioCruz (LIC). Pre-challenge exposure to L. biflexa did not prevent LIC dissemination and colonization of the kidney. However, it rescued weight loss and mouse survival thereby mitigating disease severity. Unexpectedly, there was correlation between rescue of overall health (weight gain, higher survival, lower kidney fibrosis marker ColA1) and higher shedding of LIC in urine. This stood in contrast to the L. biflexa unexposed LIC challenged control. Immune responses were dominated by increased frequency of effector T helper (CD4+) cells in spleen, as well as significant increases in serologic IgG2a. Our findings suggest that exposure to live saprophytic Leptospira primes the host to develop Th1 biased immune responses that prevent severe disease induced by a subsequent challenge with a pathogenic species. Thus, mice exposed to live saprophytic Leptospira before facing a pathogenic serovar may withstand infection with far better outcomes. Furthermore, a status of homeostasis may have been reached after kidney colonization that helps LIC complete its enzootic cycle.

9.
NPJ Vaccines ; 9(1): 33, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360853

ABSTRACT

Strategies for disease control are necessary to reduce incidence of Lyme Disease (LD) including development of safe vaccines for human use. Parainfluenza virus 5 (PIV5) vector has an excellent safety record in animals and PIV5-vectored vaccines are currently under clinical development. We constructed PIV5-vectored LD vaccine candidates expressing OspA from B. burgdorferi (OspAB31) and a chimeric protein containing sequences from B. burgdorferi and B. afzelii (OspABPBPk). Immunogenicity and vaccine efficacy were analyzed in C3H-HeN mice after prime-boost intranasal vaccination with live PIV5-OspAB31 or PIV5-OspABPBPk, subcutaneous (s.c.) vaccination with rOspAB31+Alum, and the respective controls. Mice vaccinated intranasally with live PIV5-AB31 or PIV5-ABPBPk had higher endpoint titers of serum antibody against OspAB31 at 6- and 12- months post vaccination, compared to mice vaccinated s.c. with rOspAB31. Neutralization activity of antibody was maintained up to 18-months post-immunization, with the response greater in live PIV5-delivered OspA vaccines, than that induced by s.c. rOspAB31. Challenge with infected ticks carrying 10-19 strains of B. burgdorferi performed at 4-, 9- or 15-months post-immunization showed increased breakthrough infections in mice vaccinated with s.c. rOspAB31 compared to intranasal PIV5-AB31 or PIV5-ABPBPk at 9- and 15-months, as determined by quantification of serologic antibodies to B. burgdorferi proteins as well as flaB DNA in tissues, and by visualization of motile B. burgdorferi in culture of tissues under dark field microscope. These findings indicate that immunization of mice with PIV5 delivered OspA generates immune responses that produce longer-lasting protection ( > 1 year) against tick-transmitted B. burgdorferi than a parenteral recombinant OspA vaccine.

10.
Nat Commun ; 15(1): 45, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167725

ABSTRACT

Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans. Moreover, the combination of FASN inhibition and PUFA-supplementation decreases liver triacylglycerols (TAG) in mice fed with high-fat diet. Mechanistically, FASN inhibition causes higher PUFA uptake via the lysophosphatidylcholine transporter MFSD2A, and a diacylglycerol O-acyltransferase 2 (DGAT2)-dependent incorporation of PUFA into TAG. Overall, the outcome of PUFA supplementation may depend on the degree of endogenous DNL and combining PUFA supplementation and FASN inhibition might be a promising approach to target metabolic disease.


Subject(s)
Fatty Acids, Omega-3 , Metabolic Diseases , Mice , Humans , Animals , Lipogenesis , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated , Triglycerides/metabolism , Fatty Acids , Diet, High-Fat/adverse effects
11.
Article in English | MEDLINE | ID: mdl-37975291

ABSTRACT

Significance: Sickle cell disease (SCD) is the most common inherited diathesis affecting mostly underserved populations globally. SCD is characterized by chronic pain and fatigue, severe acute painful crises requiring hospitalization and opioids, strokes, multiorgan damage, and a shortened life span. Symptoms may appear shortly after birth, and, in less developed countries, most children with SCD die before attaining age 5. Hematopoietic stem cell transplant and gene therapy offer a curative therapeutic approach, but, due to many challenges, are limited in their availability and effectiveness for a majority of persons with SCD. A critical unmet need is to develop safe and effective novel targeted therapies. A wide array of drugs currently undergoing clinical investigation hold promise for an expanded pharmacological armamentarium against SCD. Recent Advances: Hydroxyurea, the most widely used intervention for SCD management, has improved the survival in the Western world and more recently, voxelotor (R-state-stabilizer), l-glutamine, and crizanlizumab (anti-P-selectin antibody) have been approved by the Food and Drug Administration (FDA) for use in SCD. The recent FDA approval emphasizes the need to revisit the advances in understanding the core pathophysiology of SCD to accelerate novel evidence-based strategies to treat SCD. The biomechanical breakdown of erythrocytesis, the core pathophysiology of SCD, is associated with intrinsic factors, including the composition of hemoglobin, membrane integrity, cellular volume, hydration, andoxidative stress. Critical Issues and Future Directions: In this context, this review focuses on advances in emerging nongenetic interventions directed toward the therapeutic targets intrinsic to sickle red blood cells (RBCs), which can prevent impaired rheology of RBCs to impede disease progression and reduce the sequelae of comorbidities, including pain, vasculopathy, and organ damage. In addition, given the intricate pathophysiology of the disease, it is unlikely that a single pharmacotherapeutic intervention will comprehensively ameliorate the multifaceted complications associated with SCD. However, the availability of multiple drug options affords the opportunity for individualized therapeutic regimens tailored to specific SCD-related complications. Furthermore, it opens avenues for combination drug therapy, capitalizing on distinct mechanisms of action and profiles of adverse effects.

12.
Int J Biol Macromol ; 254(Pt 2): 127898, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939768

ABSTRACT

The ADP ribosylation factor like protein 15 (ARL15) gene encodes for an uncharacterized GTPase associated with rheumatoid arthritis (RA) and other metabolic disorders. Investigation of the structural and functional attributes of ARL15 is important to position the protein as a potential drug target. Using spectroscopy, we demonstrated that ARL15 exhibits properties inherent of GTPases. The Km and Vmax of the enzyme were calculated to be 100 µM and 1.47 µmole/min/µL, respectively. The equilibrium dissociation constant (Kd) of GTP binding with ARL15 was estimated to be about eight-fold higher than that of GDP. Small Angle X-ray Scattering (SAXS) data indicated that in solution, the apo state of monomeric ARL15 adopts a shape characterized by a globe of maximum linear dimension (Dmax) of 6.1 nm, and upon binding to GTP or GDP, the vector distribution profile changes to peak-n-tail shoulder with Dmax extended to 7.6 and 7.7 nm, respectively. Structure restoration using a sequence-based template and experimental SAXS data provided the first visual insight revealing that the folded N-terminal in the unbound state of the protein may toggle open upon binding to guanine nucleotides. The conformational dynamics observed in the N-terminal region offer a scope to develop drugs that target this unique GTPase, potentially providing treatments for a range of metabolic disorders.


Subject(s)
Arthritis, Rheumatoid , Metabolic Diseases , Humans , Guanine Nucleotides , Nucleotides/metabolism , Guanine , Scattering, Small Angle , X-Ray Diffraction , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Proteins/metabolism , Guanosine Triphosphate/metabolism , Guanosine Diphosphate
13.
Curr Protein Pept Sci ; 25(2): 137-153, 2024.
Article in English | MEDLINE | ID: mdl-37718516

ABSTRACT

ARL15 is a member of the RAS superfamily of small GTPases and is associated with several metabolic traits, including increased risk of diabetes, rheumatoid arthritis and lipid metabolism disorders. The ARL15 gene encodes for an uncharacterized small GTP binding protein. Its precise role in human physiology remains unknown, but several genetic association studies have recognized different variants in this gene to be statistically associated with numerous traits and complex diseases. Here, we provided the unique features of ARL15 small G protein, its association with varied metabolic and lifestyle diseases, its function in vesicular and lipid trafficking, and its binding partners. We outlined this protein as a promising and emerging therapeutic target to combat metabolic disorders like cardiovascular diseases, diabetes and rheumatoid arthritis. The review provides a comprehensive description of the current advancements in ARL15 research with a perspective that focused research will position this small GTPase as a viable target for the treatment of rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Diabetes Mellitus , Humans , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Genetic Association Studies , Phenotype
14.
Biochemistry ; 62(23): 3347-3359, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37967383

ABSTRACT

Prokaryotes synthesize fatty acids using a type II synthesis pathway (FAS). In this process, the central player, i.e., the acyl carrier protein (ACP), sequesters the growing acyl chain in its internal hydrophobic cavity. As the acyl chain length increases, the cavity expands in size, which is reflected in the NMR chemical shift perturbations and crystal structures of the acyl-ACP intermediates. A few eukaryotic organelles, such as plastids and mitochondria, also harbor type II fatty acid synthesis machinery. Plastid FAS from spinach and Plasmodium falciparum has been characterized at the molecular level, but the mitochondrial pathway remains unexplored. Here, we report NMR studies of the mitochondrial acyl-acyl carrier protein intermediates of Leishmania major (acyl-LmACP). Our studies show that LmACP experiences remarkably small conformational changes upon acylation, with perturbations confined to helices II and III only. CastP determined that the cavity size of apo-LmACP (PDB entry 5ZWT) is less than that of Escherichia coli ACP (PDB 1T8K). Thus, the small chemical shift perturbations observed in the LmACP intermediates, coupled with CastP results, suggest an unusually small cavity when fully expanded. The faster rate of C8-LmACP chain hydrolysis compared to E. coli ACP (EcACP) also supports these convictions. Structure comparison of LmACP with other type II ACP disclosed unique differences in the helix I and loop I conformations, as well as several residues present there. Numerous hydrophobic residues in helix I and loop I (conserved in all mitochondrial ACPs) are substituted with hydrophilic residues in the bacterial/plastid type II ACP. For instance, Phe and leucine at positions 14 and 34 in LmACP are substituted with a hydrophilic residue and Ala in bacterial/plastid type II ACP. Mutation of Leu 34 to Ala (corresponding residue in EcACP) resulted in a complete loss of structure, underscoring its importance in maintaining the ACP fold. Thus, our NMR studies, combined with insights from the crystal structure, highlight several unique features of LmACP, distinct from the prokaryote and plastid type II ACP. Given the high sequence identity, the features might be conserved in all mitochondrial ACPs.


Subject(s)
Acyl Carrier Protein , Leishmania major , Acyl Carrier Protein/metabolism , Leishmania major/metabolism , Escherichia coli/metabolism , Models, Molecular , Molecular Conformation
15.
J Pain ; : 104436, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38029949

ABSTRACT

Opioid prescribing remains common despite known overdose-related harms. Less is known about links to nonoverdose morbidity. We determined the association between prescribed opioid receipt with incident cardiovascular disease (CVD) using data from the Veterans Aging Cohort Study, a national prospective cohort of Veterans with/without Human Immunodeficiency Virus (HIV) receiving Veterans Health Administration care. Selected participants had no/minimal prior exposure to prescription opioids, no opioid use disorder, and no severe illness 1 year after the study start date (baseline period). We ascertained prescription opioid exposure over 3 years after the baseline period using outpatient pharmacy fill/refill data. Incident CVD ascertainment began at the end of the prescribed opioid exposure ascertainment period until the first incident CVD event, death, or September 30, 2015. We used adjusted Cox proportional hazards regression models with matching weights using propensity scores for opioid receipt to estimate CVD risk. Among 49,077 patients, 30% received opioids; the median age was 49 years, 97% were male, 49% were Black, and 47% were currently smoking. Prevalence of hypertension, diabetes, current smoking, alcohol and cocaine use disorder, and depression was higher in patients receiving opioids versus those not but were well-balanced by matching weights. Unadjusted CVD incidence rates per 1,000-person-years were higher among those receiving opioids versus those not: 17.4 (95% confidence interval [CI], 16.5-18.3) versus 14.7 (95% CI, 14.2-15.3). In adjusted analyses, those receiving opioids versus those not had an increased hazard of incident CVD (adjusted hazard ratio 1.16 [95% CI, 1.08-1.24]). Prescribed opioids were associated with increased CVD incidence, making opioids a potential modifiable CVD risk factor. PERSPECTIVE: In a propensity score weighted analysis of Veterans Administration data, prescribed opioids compared to no opioids were associated with an increased hazard of incident CVD. Higher opioid doses compared with lower doses were associated with increased hazard of incident CVD. Opioids are a potentially modifiable CVD risk factor.

16.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37662286

ABSTRACT

Background: Antibodies to ß2-glycoprotein I (ß2GPI) cause thrombosis in antiphospholipid syndrome, however the role of ß2GPI itself in regulation of coagulation pathways in vivo is not well understood. Methods: We developed ß2GPI-deficient mice (Apoh -/- ) by deleting exon 2 and 3 of Apoh using CRISPR/Cas9 and compared the propensity of wild-type (WT) and Apoh -/- mice to develop thrombosis using rose bengal and FeCl 3 -induced carotid thrombosis, laser-induced cremaster arteriolar injury, and inferior vena cava (IVC) stasis models. We also compared tail bleeding times and assessed platelet activation in WT and Apoh -/- mice in the absence and presence of exogenous ß2GPI. Results: Compared to WT littermates, Apoh -/- mice demonstrated a prolonged time to occlusion of the carotid artery after exposure to rose bengal or FeCl 3 , and reduced platelet and fibrin accumulation in cremasteric arterioles after laser injury. Similarly, significantly smaller thrombi were retrieved from the IVC of Apoh -/- mice 48 hours after IVC occlusion. The activated partial thromboplastin time (aPTT) and prothrombin time, as well as aPTT reagent- and tissue factor-induced thrombin generation times using plasma from Apoh -/- and WT mice revealed no differences. However, we observed significant prolongation of tail bleeding in Apoh -/- mice, and reduced P-selectin expression and binding of fibrinogen to the activated α2bß3 integrin on platelets from these mice after stimulation with low thrombin concentrations; these changes were reversed by exogenous ß2GPI. An antibody to PAR3 blocked thrombin-induced activation of WT, but not Apoh -/- platelets, as well as the ability of ß2GPI to restore the activation response of Apoh -/- platelets to thrombin. ß2GPI deficiency did not affect platelet activation by a PAR4-activator peptide, or ADP. Conclusions: In mice, ß2GPI may mediate procoagulant activity by enhancing the ability of PAR3 to present thrombin to PAR4, promoting platelet activation at low thrombin concentrations. Key Points: ß2GPI deficient mice are protected from experimental arterial, venous, and microvascular thrombosis.ß2GPI deficient mice display prolonged tail bleeding times and reduced PAR3-facilitated platelet activation by low concentrations of thrombin.

18.
Res Sq ; 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37503102

ABSTRACT

Lyme disease (LD) is the most prevalent vector borne disease in North America and Europe and its geographic range continues to expand. Strategies for disease control are necessary to effectively reduce incidence of LD including development of safe vaccines for human use. Parainfluenza virus 5 (PIV5) vector has an excellent safety record in animals and PIV5-vectored COVID-19 and RSV vaccines are currently under clinical development. We constructed PIV5-vectored LD vaccine candidates expressing OspA from B. burgdorferi sensu stricto (OspAB31) and a chimeric protein containing sequences from B. burgdorferi and B. afzelii (OspABPBPk). Immunogenicity and vaccine efficacy were analyzed in C3H-HeN mice after prime-boost intranasal (IN) vaccination with PIV5-OspAB31 and PIV5-OspABPBPk, subcutaneous (SC) vaccination with rOspAB31+Alum as well as the respective controls. Mice vaccinated with either PIV5-AB31 or PIV5-ABPBPk intranasally had high endpoint titers of serum antibody against OspA antigen beyond 1 year post vaccination, similar to levels detected in mice vaccinated SC with rOspAB31. Flowcytometric analysis of spleen cells at 9-months post-immunization demonstrated that immunization with the intranasal PIV5 vaccine candidates led to an overall increase in the number of memory B cells, cytotoxic T and cytotoxic effector T cells compared to SC groups. Borreliacidal activity measured by neutralization assay was maintained up to 18 months post-immunization, with the response greater in intranasal PIV5-delivered OspA vaccines, than that induced by SC rOspAB31. Challenge with infected ticks (10-19 strains of B. burgdorferi) performed at 4-, 9- or 15-months post-immunization showed increased breakthrough infections in mice vaccinated with SC rOspAB31 compared to IN PIV5-AB31 or IN PIV5-ABPBPk at 9- and 15-months, as determined by qPCR of B. burgdorferi in tissues, culture of B. burgdorferi from tissues, and antibodies against B. burgdorferi protein VIsE. These data demonstrate that intranasal PIV5-based immunization is superior to parenteral immunization with the same recombinant protein and provides long-lasting protection (> 1 year) against Lyme disease.

19.
Circulation ; 148(2): 135-143, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37226738

ABSTRACT

BACKGROUND: People with HIV (PWH) have an increased risk of cardiovascular disease. Previous cross-sectional data suggest there is a higher prevalence of abdominal aortic aneurysm (AAA) in PWH than in those without HIV. Whether PWH have an increased risk of incident AAA compared with those without HIV is unknown. METHODS: We analyzed data among participants without prevalent AAA from the Veterans Aging Cohort Study, a prospective, observational, longitudinal cohort of veterans with HIV matched 1:2 with veterans without HIV infection. We calculated AAA rates by HIV status and assessed the association between HIV infection and incident AAA using Cox proportional hazards models. We defined AAA using the International Classification of Diseases, 9th or 10th revision, or Current Procedural Terminology codes and adjusted all models for demographic characteristics, cardiovascular disease risk factors, and substance use. Secondary analyses examined the association between time-varying CD4+ T-cell count or HIV viral load and incident AAA. RESULTS: Among 143 001 participants (43 766 with HIV), over a median follow-up of 8.7 years, there were 2431 incident AAA events (26.4% among PWH). Rates of incident AAA per 1000 person-years were similar among PWH (2.0 [95% CI, 1.9-2.2]) and people without HIV (2.2 [95% CI, 2.1-2.3]). There was no evidence that HIV infection increased the risk of incident AAA compared with no HIV infection (adjusted hazard ratio, 1.02 [95% CI, 0.92-1.13]). In adjusted analyses with time-varying CD4+ T-cell counts or HIV viral load, PWH with CD4+ T-cell counts <200 cells/mm3 (adjusted hazard ratio, 1.29 [95% CI, 1.02-1.65]) or HIV viral load ≥500 copies/mL (adjusted hazard ratio, 1.29 [95% CI, 1.09-1.52]) had an increased risk of AAA compared with those without HIV. CONCLUSIONS: HIV infection is associated with an increased risk of AAA among those with low CD4+ T-cell counts or elevated HIV viral load over time.


Subject(s)
Aortic Aneurysm, Abdominal , Cardiovascular Diseases , HIV Infections , Veterans , Humans , Cohort Studies , Risk Factors , Cardiovascular Diseases/epidemiology , Prospective Studies , Cross-Sectional Studies , HIV Infections/diagnosis , HIV Infections/epidemiology , Aortic Aneurysm, Abdominal/epidemiology
20.
Nanoscale ; 15(16): 7450-7459, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37013963

ABSTRACT

Mimicking synaptic functions in hardware devices is a crucial step in realizing brain-like computing beyond the von Neumann architecture. 1D nanomaterials with spatial extensions of a few µm, similar to biological neurons, gain significance given the ease of electrical transport as well as directionality. Herein, we report a two-terminal optically active device based on 1D supramolecular nanofibres consisting of CS (coronene tetracarboxylate) and DMV (dimethyl viologen) forming alternating D-A (donor-acceptor) pairs, emulating synaptic functions such as the STP (short-term potentiation), LTP (long-term potentiation), PPF (paired-pulse facilitation), STDP (spike-time dependent plasticity) and learning-relearning behaviors. In addition, an extensive study on the less explored Ebbinghaus forgetting curve has been carried out. The supramolecular nanofibres being light sensitive, the potential of the device as a visual system is demonstrated using a 3 × 3 pixel array.

SELECTION OF CITATIONS
SEARCH DETAIL
...