Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892398

ABSTRACT

Myocardial infarction activates an intense fibro-inflammatory reaction that is essential for cardiac remodeling and heart failure (HF). Bioactive peptide galanin plays a critical role in regulating cardiovascular homeostasis; however, its specific functional relevance in post-infarction fibro-inflammatory reprogramming remains obscure. Here, we show that galanin coordinates the fibro-inflammatory trajectory and mitochondrial integrity in post-infarction reperfusion injury. Aberrant deposition of collagen was associated with a marked increase in CD68-positive macrophage infiltration in cardiac tissue in mice subjected to myocardial ischemia/reperfusion (I/R) for 14 days compared to sham controls. Furthermore, we found that the myocardial expression level of a specific marker of M2 macrophages, CD206, was significantly down-regulated in I/R-challenged mice. In contrast, galanin treatment started during the reperfusion phase blunted the fibro-inflammatory responses and promoted the expression of CD206 in I/R-remodeled hearts. In addition, we found that the anti-apoptotic and anti-hypertrophic effects of galanin were associated with the preservation of mitochondrial integrity and promotion of mitochondrial biogenesis. These findings depict galanin as a key arbitrator of fibro-inflammatory responses to cardiac I/R injury and offer a promising therapeutic trajectory for the treatment of post-infarct cardiovascular complications.


Subject(s)
Galanin , Macrophages , Myocardial Reperfusion Injury , Animals , Galanin/metabolism , Galanin/pharmacology , Mice , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Macrophages/metabolism , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mitochondria/metabolism , Mice, Inbred C57BL , Receptors, Cell Surface/metabolism , Inflammation/metabolism , Inflammation/pathology , Mannose Receptor , Lectins, C-Type/metabolism , Myocardium/metabolism , Myocardium/pathology , Mannose-Binding Lectins/metabolism , Disease Models, Animal , Apoptosis
2.
Antioxidants (Basel) ; 13(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38397807

ABSTRACT

Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia-reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are conserved intracellular organelles that enable the safe and stable storage of neutral lipids within the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins are increasingly being recognized for playing a critical role beyond energy metabolism and lipid handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial.

3.
Int J Mol Sci ; 24(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958823

ABSTRACT

Age-related alterations in cardiac function, metabolic, inflammatory and antioxidant profiles are associated with an increased risk of cardiovascular mortality and morbidity. Here, we examined cardiac and metabolic phenotypes in relation to inflammatory status and antioxidant capacity in young, middle-aged and old mice. Real-time reverse transcription-polymerase chain reactions were performed on myocardium and immunoassays on plasma. Left ventricular (LV) structure and function were assessed by echocardiography using high-frequency ultrasound. Middle-aged mice exhibited an altered metabolic profile and antioxidant capacity compared to young mice, whereas myocardial expression of inflammatory factors (TNFα, IL1ß, IL6 and IL10) remained unchanged. In contrast, old mice exhibited increased expression of inflammatory cytokines and plasma levels of resistin compared to young and middle-aged mice (p < 0.05). The pro-inflammatory signature of aged hearts was associated with alterations in glutathione redox homeostasis and elevated contents of 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation and oxidative stress. Furthermore, echocardiographic parameters of LV systolic and diastolic functions were significantly altered in old mice compared to young mice. Taken together, these findings suggest age-related shifts in cardiac phenotype encompass the spectrum of metabo-inflammatory abnormalities and altered redox homeostasis.


Subject(s)
Antioxidants , Cytokines , Mice , Animals , Antioxidants/metabolism , Cytokines/metabolism , Heart , Myocardium/metabolism , Oxidative Stress
4.
Int J Mol Sci ; 24(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37511465

ABSTRACT

Environmental stress can disturb the integrative functioning of the cardiovascular system and trigger a number of adaptive and/or maladaptive cell responses. Concomitant with the expanding use of mobile communication systems, public exposure to electromagnetic fields (EMFs) raises the question of the impact of 900 MHz EMFs on cardiovascular health. Therefore, in this study, we experimentally investigated whether 915 MHz EMF exposure influenced cardiac metabolic, antioxidant, apoptotic, and fibro-inflammatory profiles in a mouse model. Healthy mice were sham-exposed or exposed to EMF for 14 days. Western blot analysis using whole cardiac tissue lysates demonstrated that there was no significant change in the expression of oxidative phosphorylation (OXPHOS) complexes between the control and EMF-exposed mice. In addition, the myocardial expression of fibro-inflammatory cytokines, antioxidant enzymes, and apoptosis-related markers remained unchanged in the EMF-challenged hearts. Finally, the structural integrity of the cardiac tissues was preserved among the groups. These findings suggest that the apoptotic, antioxidant, metabolic, and fibro-inflammatory profiles of the heart remained stable under conditions of EMF exposure in the analyzed mice.


Subject(s)
Electromagnetic Fields , Fibromyalgia , Mice , Animals , Electromagnetic Fields/adverse effects , Antioxidants/metabolism , Heart , Oxidative Stress , Myocardium/metabolism , Fibromyalgia/metabolism
5.
Front Cardiovasc Med ; 10: 1205893, 2023.
Article in English | MEDLINE | ID: mdl-37351281

ABSTRACT

Introduction: Mitochondria are central energy generators for the heart, producing adenosine triphosphate (ATP) through the oxidative phosphorylation (OXPHOS) system. However, mitochondria also guide critical cell decisions and responses to the environmental stressors. Methods: This study evaluated whether prolonged electromagnetic stress affects the mitochondrial OXPHOS system and structural modifications of the myocardium. To induce prolonged electromagnetic stress, mice were exposed to 915 MHz electromagnetic fields (EMFs) for 28 days. Results: Analysis of mitochondrial OXPHOS capacity in EMF-exposed mice pointed to a significant increase in cardiac protein expression of the Complex I, II, III and IV subunits, while expression level of α-subunit of ATP synthase (Complex V) was stable among groups. Furthermore, measurement of respiratory function in isolated cardiac mitochondria using the Seahorse XF24 analyzer demonstrated that prolonged electromagnetic stress modifies the mitochondrial respiratory capacity. However, the plasma level of malondialdehyde, an indicator of oxidative stress, and myocardial expression of mitochondria-resident antioxidant enzyme superoxide dismutase 2 remained unchanged in EMF-exposed mice as compared to controls. At the structural and functional state of left ventricles, no abnormalities were identified in the heart of mice subjected to electromagnetic stress. Discussion: Taken together, these data suggest that prolonged exposure to EMFs could affect mitochondrial oxidative metabolism through modulating cardiac OXPHOS system.

6.
Biomedicines ; 10(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35625666

ABSTRACT

Exposure to electromagnetic fields (EMFs) is a sensitive research topic. Despite extensive research, to date there is no evidence to conclude that exposure to EMFs influences the cardiovascular system. In the present study, we examined whether 915 MHz EMF exposure affects myocardial antioxidative and apoptotic status in vitro and in vivo. No statistically significant difference in the apoptotic cell profile and antioxidant capacity was observed between controls and short-term EMF-exposed mouse cardiomyocytes and H9C2 cardiomyoblasts. Compared with sham-exposed controls, mice subjected to a 915 MHz EMF for 48 h and 72 h had no significant effect on structural tissue integrity and myocardial expression of apoptosis and antioxidant genes. Therefore, these results indicate that short-term exposure to EMF in cardiac cells and tissues did not translate into a significant effect on the myocardial antioxidant defense system and apoptotic cell death.

7.
Front Pharmacol ; 13: 869179, 2022.
Article in English | MEDLINE | ID: mdl-35431947

ABSTRACT

The regulatory peptide galanin is broadly distributed in the central nervous systems and peripheral tissues where it modulates numerous physiological and pathological processes through binding to its three G-protein-coupled receptors, GalR1-3. However, the function and identity of the galaninergic system in the heart remain unclear. Therefore, we investigated the expression of the galanin receptors in cardiac cells and tissues and found that GalR2 is the dominant receptor subtype in adult mouse hearts, cardiomyocytes and H9C2 cardiomyoblasts. In vivo, genetic suppression of GalR2 promotes cardiac hypertrophy, fibrosis and mitochondrial oxidative stress in the heart. In vitro, GalR2 silencing by siRNA abolished the beneficial effects of galanin on cell hypertrophy and mitochondrial reactive oxygen species (ROS) production. These findings unravel new insights into the role of galaninergic system in the heart and suggest novel therapeutic strategies in heart disease.

8.
Med Sci Monit ; 28: e934804, 2022 Jan 02.
Article in English | MEDLINE | ID: mdl-34974513

ABSTRACT

BACKGROUND Heart failure (HF) most commonly occurs due to ischemic heart disease from stenotic coronary artery disease (CAD). HF is classified into 3 groups based on the percentage of the ejection fraction (EF): reduced (HFrEF), mid-range (HFmrEF), and preserved (HFpEF). This retrospective study included 573 patients who presented with HF based on the evaluation of EF and were evaluated for CAD by coronary angiography before undergoing coronary angioplasty at a single center in Toulouse, France. MATERIAL AND METHODS This retrospective observational study included patients recently diagnosed with HF or acute decompensation of chronic HF and referred for coronary angiography at Toulouse University Hospital between January 2019 and May 2020. RESULTS Significant CAD was found in 55.8%, 55%, and 55% of the whole population, HFpEF, and HFrEF groups, respectively. Older age, male sex, and diabetes mellitus were the main risk factors for ischemic HF. Except for age and sex, patients with ischemic HFpEF were comparable to those with non-ischemic HFpEF, unlike the ischemic HFrEF group, which had more common cardiovascular risk factors than the non-ischemic HFrEF group. The ischemic HFpEF group had an older age and higher rate of dyslipidemia than the ischemic HFrEF group. CONCLUSIONS At our center, CAD was diagnosed in more than half of patients who presented with heart failure with preserved or reduced EF. Older age and male sex were the common risk factors in patients with HFpEF and HFrEF.


Subject(s)
Angioplasty, Balloon, Coronary , Coronary Angiography , Coronary Artery Disease , Heart Failure, Diastolic , Heart Failure, Systolic , Age Factors , Aged , Angioplasty, Balloon, Coronary/methods , Angioplasty, Balloon, Coronary/statistics & numerical data , Coronary Angiography/methods , Coronary Angiography/statistics & numerical data , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Coronary Artery Disease/physiopathology , Coronary Artery Disease/surgery , Female , France/epidemiology , Heart Disease Risk Factors , Heart Failure, Diastolic/diagnosis , Heart Failure, Diastolic/etiology , Heart Failure, Diastolic/physiopathology , Heart Failure, Systolic/diagnosis , Heart Failure, Systolic/etiology , Heart Failure, Systolic/physiopathology , Humans , Male , Retrospective Studies , Risk Factors , Sex Factors , Stroke Volume
9.
Int J Mol Sci ; 22(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502314

ABSTRACT

Diabetes is a major risk factor for the development of cardiovascular disease with a higher incidence of myocardial infarction. This study explores the role of metformin, a first-line antihyperglycemic agent, in postinfarction fibrotic and inflammatory remodeling in mice. Three-month-old C57BI/6J mice were submitted to 30 min cardiac ischemia followed by reperfusion for 14 days. Intraperitoneal treatment with metformin (5 mg/kg) was initiated 15 min after the onset of reperfusion and maintained for 14 days. Real-time PCR was used to determine the levels of COL3A1, αSMA, CD68, TNF-α and IL-6. Increased collagen deposition and infiltration of macrophages in heart tissues are associated with upregulation of the inflammation-associated genes in mice after 14 days of reperfusion. Metformin treatment markedly reduced postinfarction fibrotic remodeling and CD68-positive cell population in mice. Moreover, metformin resulted in reduced expression of COL3A1, αSMA and CD68 after 14 days of reperfusion. Taken together, these results open new perspectives for the use of metformin as a drug that counteracts adverse myocardial fibroticand inflammatory remodeling after MI.


Subject(s)
Fibrosis/drug therapy , Hypoglycemic Agents/pharmacology , Inflammation/drug therapy , Metformin/pharmacology , Myocardial Infarction/complications , Myocardium/pathology , Animals , Fibrosis/etiology , Fibrosis/pathology , Inflammation/etiology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Ventricular Remodeling
10.
Theranostics ; 11(13): 6491-6506, 2021.
Article in English | MEDLINE | ID: mdl-33995670

ABSTRACT

Rationale: TGFß signaling pathway controls tissue fibrotic remodeling, a hallmark in many diseases leading to organ injury and failure. In this study, we address the role of Apilimod, a pharmacological inhibitor of the lipid kinase PIKfyve, in the regulation of cardiac pathological fibrotic remodeling and TGFß signaling pathway. Methods: The effects of Apilimod treatment on myocardial fibrosis, hypertrophy and cardiac function were assessed in vivo in a mouse model of pressure overload-induced heart failure. Primary cardiac fibroblasts and HeLa cells treated with Apilimod as well as genetic mutation of PIKfyve in mouse embryonic fibroblasts were used as cell models. Results: When administered in vivo, Apilimod reduced myocardial interstitial fibrosis development and prevented left ventricular dysfunction. In vitro, Apilimod controlled TGFß-dependent activation of primary murine cardiac fibroblasts. Mechanistically, both Apilimod and genetic mutation of PIKfyve induced TGFß receptor blockade in intracellular vesicles, negatively modulating its downstream signaling pathway and ultimately dampening TGFß response. Conclusions: Altogether, our findings propose a novel function for PIKfyve in the control of myocardial fibrotic remodeling and the TGFß signaling pathway, therefore opening the way to new therapeutic perspectives to prevent adverse fibrotic remodeling using Apilimod treatment.


Subject(s)
Heart Failure/drug therapy , Hydrazones/therapeutic use , Morpholines/therapeutic use , Phosphatidylinositol 3-Kinases/physiology , Pyrimidines/therapeutic use , Signal Transduction/drug effects , Transforming Growth Factor beta/physiology , Animals , Cells, Cultured , Drug Evaluation, Preclinical , Fibroblasts/drug effects , Fibrosis , HEK293 Cells , HeLa Cells , Heart Failure/pathology , Humans , Hydrazones/pharmacology , Male , Mice , Mice, Inbred C57BL , Morpholines/pharmacology , Myocardium/pathology , Pyrimidines/pharmacology , Rats , Receptor, Transforming Growth Factor-beta Type II/drug effects , Single-Blind Method , Ventricular Dysfunction, Left/prevention & control , Ventricular Remodeling/drug effects
11.
Redox Biol ; 40: 101866, 2021 04.
Article in English | MEDLINE | ID: mdl-33493902

ABSTRACT

Autophagy and apoptosis are powerful regulators of multiple facets of cellular metabolism and homeostasis. Here, we uncover that galanin, a pleiotropic peptide, regulates cardiac autophagy and deactivates apoptotic cell death through the Forkhead box protein O1 (FoxO1) pathway. In hypertrophied heart, galanin promotes autophagy and metabolic shift from fatty acid (FA) to glucose oxidation and preserves mitochondrial integrity. In cardiomyoblasts, galanin triggers autophagosome formation and alleviates hypertrophy, apoptotic cell death, and mitochondrial stress. Mechanistically, galanin dictates cell autophagic and anti-apoptotic phenotypes through FoxO1 pathway. Together, these findings uncover a previously unknown role for galanin in the regulation of cardiac autophagy and provide new insights into the molecular mechanisms supporting cell survival in the hypertrophic reprogramming of the heart.


Subject(s)
Galanin , Signal Transduction , Apoptosis , Autophagy , Cardiomegaly , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans
12.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008491

ABSTRACT

Protein-protein interactions is a longstanding challenge in cardiac remodeling processes and heart failure. Here, we use the MetaCore network and the Google matrix algorithms for prediction of protein-protein interactions dictating cardiac fibrosis, a primary cause of end-stage heart failure. The developed algorithms allow identification of interactions between key proteins and predict new actors orchestrating fibroblast activation linked to fibrosis in mouse and human tissues. These data hold great promise for uncovering new therapeutic targets to limit myocardial fibrosis.


Subject(s)
Fibrosis/metabolism , Protein Interaction Maps/physiology , Algorithms , Animals , Heart Failure/metabolism , Humans , Mice , Myocardium/metabolism , Search Engine/methods , Ventricular Remodeling/physiology
13.
J Mol Cell Cardiol ; 138: 165-174, 2020 01.
Article in English | MEDLINE | ID: mdl-31836542

ABSTRACT

AIMS: Apelin and vitamin E have been proposed as signaling molecules, but their synergistic role is unknown. The aim of this work was to develop vitamin E TPGS/Apelin system to test their cardioprotective and metabolic efficacy in vitro and in vivo. METHODS: FDA-approved surfactant D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-1000) and Apelin complex were characterized by physico-chemical methods (CMC determination, dynamic light scattering and circular dichroism). In vitro studies were carried out on H9C2 cardiomyoblasts and isolated murine cardiomyocytes. In vivo studies were performed in isoproterenol- and high-fat diet-induced cardiac remodeling models in mice. RESULTS: We found that vitamin E TPGS/Apelin provide cardioprotective and metabolic efficacy in vitro and in vivo. In vitro studies revealed that vitamin E TPGS/Apelin reduces hypoxia-induced mitochondrial ROS production in cultured cardiomyocytes and H9C2 cardiomyoblasts. In addition, vitamin E TPGS/Apelin confers apoptotic response to hypoxic stress in cells. In a mouse model of isoproterenol-induced cardiac injury, TPGS is not able to affect cardiac remodeling, however combination of vitamin E TPGS and Apelin counteracts myocardial apoptosis, oxidative stress, hypertrophy and fibrosis. Furthermore, combination treatment attenuated obesity-induced cardiometabolic and fibrotic remodeling in mice. CONCLUSION: Together, our data demonstrated the therapeutic benefits of vitamin E TPGS/Apelin complex to combat cardiovascular and metabolic disorders.


Subject(s)
Apelin/pharmacology , Cardiotonic Agents/pharmacology , Vitamin E/pharmacology , Animals , Apoptosis/drug effects , Cardiomegaly/complications , Cardiomegaly/pathology , Cell Hypoxia/drug effects , Cell Line , Diabetic Cardiomyopathies/complications , Diabetic Cardiomyopathies/pathology , Diet, High-Fat , Fibrosis , Isoproterenol , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Rats , Reactive Oxygen Species/metabolism , Vascular Remodeling/drug effects
14.
Front Pharmacol ; 10: 154, 2019.
Article in English | MEDLINE | ID: mdl-30873028

ABSTRACT

Cardiovascular complications are the most prevalent cause of morbidity and mortality in diabetic patients. Metformin is currently the first-line blood glucose-lowering agent with potential relevance to cardiovascular diseases. However, the underpinning mechanisms of action remain elusive. Here, we report that metformin represses cardiac apoptosis at least in part through inhibition of Forkhead box O1 (FoxO1) pathway. In a mouse model of ischemia-reperfusion (I/R), treatment with metformin attenuated cardiac and hypertrophic remodeling after 14 days of post-reperfusion. Additionally, cardiac expression of brain-like natriuretic peptide (BNP) was significantly reduced in metformin-treated mice after 14 days of cardiac I/R. In cultured H9C2 cells, metformin counteracted hypertrophic and apoptotic responses to metabolic or hypoxic stress. FoxO1 silencing by siRNA abolished anti-apoptotic effect of metformin under hypoxic stress in H9C2 cells. Taken together, these results suggest that metformin protects the heart against hypertrophic and apoptotic remodeling after myocardial infarction.

15.
Sci Rep ; 8(1): 7894, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29784904

ABSTRACT

Identification of novel circulating biomarkers predicting death and major cardio-metabolic events in obese patients with heart failure (HF) remains a research priority. In this study, we compared multi-marker profile of non-obese (NOB) and obese (OB) HF patients in relation to mortality outcome. The new multiplex proximity extension assay technology was used to analyze the levels of 92 proteins in plasma samples from HF patients according to body mass index (BMI) categories. At 2-year follow-up, all-cause mortality rates were significantly greater in NOB patients (BMI < 30 kg/m2) compared to the OB patients (BMI > 30 kg/m2) with HF (odds ratio 26; 95% CI: 1.14-624, p < 0,04). Quantitative proteomic analysis revealed thirteen distinct proteins expression profiles of OB and NOB HF patients. Among these proteins, RAGE, CXCL6, CXCL1, CD40, NEMO, VEGF-A, KLK6, PECAM1, PAR1, MMP1, BNP and NTproBNP were down-regulated, whereas leptin was up-regulated in OB HF patients. In addition, an inverse correlation between plasma BNP levels and leptin in OB HF patients was observed (r = -0.58 p = 0.02). This study identifies specific plasma protein signature in OB and NOB patients with HF in relation to mortality outcome.


Subject(s)
Biomarkers/blood , Heart Failure/diagnosis , Obesity/complications , Proteome/analysis , Proteome/metabolism , Aged , Heart Failure/blood , Heart Failure/etiology , Humans , Male , Middle Aged , Retrospective Studies
16.
Mol Ther ; 26(3): 902-916, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29249393

ABSTRACT

Despite considerable advances in cardiovascular disease treatment, heart failure remains a public health challenge. In this context, gene therapy appears as an attractive approach, but clinical trials using single therapeutic molecules result in moderate benefit. With the objective of improving ischemic heart failure therapy, we designed a combined treatment, aimed to simultaneously stimulate angiogenesis, prevent cardiac remodeling, and restore contractile function. We have previously validated IRES-based vectors as powerful tools to co-express genes of interest. Mono- and multicistronic lentivectors expressing fibroblast growth factor 2 (angiogenesis), apelin (cardioprotection), and/or SERCA2a (contractile function) were produced and administrated by intramyocardial injection into a mouse model of myocardial infarction. Data reveal that combined treatment simultaneously improves vessel number, heart function parameters, and fibrosis prevention, due to FGF2, SERCA2a, and apelin, respectively. Furthermore, addition of SERCA2a in the combination decreases cardiomyocyte hypertrophy. Large-scale transcriptome analysis reveals that the triple treatment is the most efficient in restoring angiogenic balance as well as expression of genes involved in cardiac function and remodeling. Our study validates the concept of combined treatment of ischemic heart disease with apelin, FGF2, and SERCA2a and shows that such therapeutic benefit is mediated by a more effective recovery of gene network regulation.


Subject(s)
Apelin/genetics , Fibroblast Growth Factor 2/genetics , Gene Expression , Gene Regulatory Networks , Myocardial Ischemia/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Animals , Cardiomegaly , Disease Models, Animal , Endothelial Cells/metabolism , Fibrosis , Gene Order , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/genetics , Lentivirus/genetics , Mice , Myocardial Ischemia/pathology , Myocardial Ischemia/therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Transcriptome , Transduction, Genetic
17.
Oncotarget ; 8(60): 101659-101671, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-29254194

ABSTRACT

BACKGROUND AND PURPOSE: Galanin is an endogenous peptide involved in diverse physiological functions in the central nervous system including central cardiovascular regulation. The present study was designed to evaluate the potential effects of the short N-terminal galanin fragment 2-15 (G) on cardiac ischemia/reperfusion (I/R) injury. EXPERIMENTAL APPROACH: Peptide G was synthesized by the automatic solid phase method and identified by 1H-NMR spectroscopy and mass spectrometry. Experiments were performed on cultured rat cardiomyoblast (H9C2) cells, isolated perfused working rat hearts and anaesthetized open-chest rats. KEY RESULTS: Cell viability increased significantly after treatment with 10 and 50 nM of G peptide. In hypoxia and reoxygenation conditions, exposure of H9C2 cells to G peptide decreased cell apoptosis and mitochondrial reactive oxygen species (ROS) production. Postischemic infusion of G peptide reduced cell membrane damage and improved functional recovery in isolated hearts during reperfusion. These effects were accompanied by enhanced restoration of myocardial metabolic state. Treatment with G peptide at the onset of reperfusion induced minor changes in hemodynamic variables but significantly reduced infarct size and plasma levels of necrosis markers. CONCLUSION AND IMPLICATIONS: These findings suggest that G peptide is effective in mitigating cardiac I/R injury, thereby providing a rationale for promising tool for the treatment of cardiovascular diseases.

18.
EMBO Mol Med ; 9(6): 770-785, 2017 06.
Article in English | MEDLINE | ID: mdl-28396567

ABSTRACT

PIKfyve is an evolutionarily conserved lipid kinase that regulates pleiotropic cellular functions. Here, we identify PIKfyve as a key regulator of cardiometabolic status and mitochondrial integrity in chronic diet-induced obesity. In vitro, we show that PIKfyve is critical for the control of mitochondrial fragmentation and hypertrophic and apoptotic responses to stress. We also provide evidence that inactivation of PIKfyve by the selective inhibitor STA suppresses excessive mitochondrial ROS production and apoptosis through a SIRT3-dependent pathway in cardiomyoblasts. In addition, we report that chronic STA treatment improves cardiometabolic profile in a mouse model of cardiomyopathy linked to obesity. We provide evidence that PIKfyve inhibition reverses obesity-induced cardiac mitochondrial damage and apoptosis by activating SIRT3. Furthermore, treatment of obese mice with STA improves left ventricular function and attenuates cardiac hypertrophy. In contrast, STA is not able to reduce isoproterenol-induced cardiac hypertrophy in SIRT3.KO mice. Altogether, these results unravel a novel role for PIKfyve in obesity-associated cardiomyopathy and provide a promising therapeutic strategy to combat cardiometabolic complications in obesity.


Subject(s)
Apoptosis , Hypertrophy/pathology , Myocardium/pathology , Phosphoinositide-3 Kinase Inhibitors , Sirtuin 3/metabolism , Animals , Cardiomyopathies/pathology , Cell Line , Disease Models, Animal , Mice, Knockout , Mice, Obese , Obesity/complications , Phosphatidylinositol 3-Kinases
19.
Oncotarget ; 8(13): 21241-21252, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28177906

ABSTRACT

BACKGROUND AND PURPOSE: Galanin is a multifunctional neuropeptide with pleiotropic roles. The present study was designed to evaluate the potential effects of galanin (2-11) (G1) on functional and metabolic abnormalities in response to myocardial ischemia-reperfusion (I/R) injury. EXPERIMENTAL APPROACH: Peptide G1 was synthesized by the 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase method. The chemical structure was identified by 1H-NMR spectroscopy and mass spectrometry. Experiments were conducted using a rat model of I/R injury in vivo, isolated perfused rat hearts ex vivo and cultured rat cardiomyoblast H9C2 cells in vitro. Cardiac function, infarct size, myocardial energy metabolism, hemodynamic parameters, plasma levels of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) were measured in order to evaluate the effects of G1 on myocardial I/R injury. KEY RESULTS: Treatment with G1 increased cell viability in a dose-dependent manner, inhibited cell apoptosis and excessive mitochondrial reactive oxygen species (ROS) production in response to oxidative stress in H9C2 cells. Pre- or postischemic infusion of G1 enhanced functional and metabolic recovery during reperfusion of the ischemic isolated rat heart. Administration of G1 at the onset of reperfusion significantly reduced infarct size and plasma levels of CK-MB and LDH in rats subjected to myocardial I/R injury. CONCLUSIONS AND IMPLICATIONS: These data provide the first evidence for cardioprotective activity of galanin G1 against myocardial I/R injury. Therefore, peptide G1 may represent a promising treatment strategy for ischemic heart disease.


Subject(s)
Galanin/pharmacology , Myocardial Reperfusion Injury/pathology , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Disease Models, Animal , In Situ Nick-End Labeling , Isolated Heart Preparation , Male , Rats , Rats, Wistar
20.
Br J Pharmacol ; 173(11): 1850-63, 2016 06.
Article in English | MEDLINE | ID: mdl-27005319

ABSTRACT

BACKGROUND AND PURPOSE: Apelin-13, an endogenous ligand for the apelin (APJ) receptor, behaves as a potent modulator of metabolic and cardiovascular disorders. Here, we examined the effects of apelin-13 on myocardial injury in a mouse model combining ischaemia/reperfusion (I/R) and obesity and explored their underlying mechanisms. EXPERIMENTAL APPROACH: Adult male C57BL/6J mice were fed a normal diet (ND) or high-fat diet (HFD) for 6 months and then subjected to cardiac I/R. The effects of apelin-13 post-treatment on myocardial injury were evaluated in HFD-fed mice after 24 h I/R. Changes in protein abundance, phosphorylation, subcellular localization and mRNA expression were determined in cardiomyoblast cell line H9C2, primary cardiomyocytes and cardiac tissue from ND- and HFD-fed mice. Apoptosis was evaluated by TUNEL staining and caspase-3 activity. Mitochondrial ultrastructure was analysed by electron microscopy. KEY RESULTS: In HFD-fed mice subjected to cardiac I/R, i.v. administration of apelin-13 significantly reduced infarct size, myocardial apoptosis and mitochondrial damage compared with vehicle-treated animals. In H9C2 cells and primary cardiomyocytes, apelin-13 induced FoxO1 phosphorylation and nuclear exclusion. FoxO1 silencing by siRNA abolished the protective effects of apelin-13 against hypoxia-induced apoptosis and mitochondrial ROS generation. Finally, apelin deficiency in mice fed a HFD resulted in reduced myocardial FoxO1 expression and impaired FoxO1 distribution. CONCLUSIONS AND IMPLICATIONS: These data reveal apelin as a novel regulator of FoxO1 in cardiac cells and provide evidence for the potential of apelin-13 in prevention of apoptosis and mitochondrial damage in conditions combining I/R injury and obesity.


Subject(s)
Apoptosis/drug effects , Diet, High-Fat/adverse effects , Forkhead Box Protein O1/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Myocardial Reperfusion Injury/metabolism , Obesity/drug therapy , Animals , Intercellular Signaling Peptides and Proteins/administration & dosage , Mice , Mice, Inbred C57BL , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Obesity/metabolism , Obesity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL