Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10251, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704512

ABSTRACT

Mesenchymal stem cells (MSCs) exert their anti-inflammatory and anti-fibrotic effects by secreting various humoral factors. Interferon-gamma (IFN-γ) can enhance these effects of MSCs, and enhancement of regulatory T (Treg) cell induction is thought to be an underlying mechanism. However, the extent to which Treg cell induction by MSCs pretreated with IFN-γ (IFN-γ MSCs) ameliorates renal fibrosis remains unknown. In this study, we investigated the effects of Treg cell induction by IFN-γ MSCs on renal inflammation and fibrosis using an siRNA knockdown system. Administration of IFN-γ MSCs induced Treg cells and inhibited infiltration of inflammatory cells in ischemia reperfusion injury (IRI) rats more drastically than control MSCs without IFN-γ pretreatment. In addition, administration of IFN-γ MSCs more significantly attenuated renal fibrosis compared with control MSCs. Indoleamine 2,3-dioxygenase (IDO) expression levels in conditioned medium from MSCs were enhanced by IFN-γ pretreatment. Moreover, IDO1 knockdown in IFN-γ MSCs reduced their anti-inflammatory and anti-fibrotic effects in IRI rats by reducing Treg cell induction. Our findings suggest that the increase of Treg cells induced by enhanced secretion of IDO by IFN-γ MSCs played a pivotal role in their anti-fibrotic effects. Administration of IFN-γ MSCs may potentially be a useful therapy to prevent renal fibrosis progression.


Subject(s)
Fibrosis , Indoleamine-Pyrrole 2,3,-Dioxygenase , Interferon-gamma , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , T-Lymphocytes, Regulatory , Animals , Interferon-gamma/metabolism , T-Lymphocytes, Regulatory/immunology , Mesenchymal Stem Cells/metabolism , Rats , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Mesenchymal Stem Cell Transplantation/methods , Kidney/pathology , Kidney/drug effects , Reperfusion Injury/immunology , Kidney Diseases/therapy , Kidney Diseases/pathology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL