Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Article in English | MEDLINE | ID: mdl-39054290

ABSTRACT

BACKGROUND AND PURPOSE: The novel MR imaging technique of vascular architecture mapping allows in vivo characterization of local changes in cerebral microvasculature, but reference ranges for vascular architecture mapping parameters in healthy brain tissue are lacking, limiting its potential applicability as an MR imaging biomarker in clinical practice. We conducted whole-brain vascular architecture mapping in a large cohort to establish vascular architecture mapping parameter references ranges and identify region-specific cortical and subcortical microvascular profiles. MATERIALS AND METHODS: This was a single-center examination of adult patients with unifocal, stable low-grade gliomas with multiband spin- and gradient-echo EPI sequence at 3T using parallel imaging. Voxelwise plotting of resulting values for gradient-echo (R2*) versus spin-echo (R2) relaxation rates during contrast agent bolus administration generates vessel vortex curves that allow the extraction of vascular architecture mapping parameters representative of, eg, vessel type, vessel radius, or CBV in the underlying voxel. Averaged whole-brain parametric maps were calculated for 9 parameters, and VOI analysis was conducted on the basis of a standardized brain atlas and individual cortical GM and WM segmentation. RESULTS: Prevalence of vascular risk factors among subjects (n = 106; mean age, 39.2 [SD, 12.5] years; 56 women) was similar to those in the German population. Compared with WM, we found cortical GM to have larger mean vascular calibers (5.80 [SD, 0.59] versus 4.25 [SD, 0.62] P < .001), increased blood volume fraction (20.40 [SD, 4.49] s-1 versus 11.05 [SD, 2.44] s-1; P < .001), and a dominance of venous vessels. Distinct microvascular profiles emerged for cortical GM, where vascular architecture mapping vessel type indicator differed, eg, between the thalamus and cortical GM (mean, -2.47 [SD, 4.02] s-2 versus -5.41 [SD, 2.84] s-2; P < .001). Intraclass correlation coefficient values indicated overall high test-retest reliability for vascular architecture mapping parameter mean values when comparing multiple scans per subject. CONCLUSIONS: Whole-brain vascular architecture mapping in the adult brain reveals region-specific microvascular profiles. The obtained parameter reference ranges for distinct anatomic and functional brain areas may be used for future vascular architecture mapping studies on cerebrovascular pathologies and might facilitate early discovery of microvascular changes, in, eg, neurodegeneration and neuro-oncology.

2.
Z Med Phys ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960810

ABSTRACT

PURPOSE: To apply velocity selective arterial spin labeling (VSASL) combined with a navigator-based (NAV) prospective motion compensation method for a free-breathing liver perfusion measurement without contrast agent. METHODS: Sinc-modulated Velocity Selective Inversion (sinc-VSI) pulses were applied as labeling and control pulses. In order to account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI based readouts, navigator and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. The sinc-VSI without velocity-selective gradients during the control condition but with velocity-selective gradients along all three directions during labeling was chosen for the VSASL. The VSASL was compared with pseudo-continuous ASL (pCASL) methods, which selectively tagged the moving spins using a tagging plane placed at the portal vein and hepatic artery. RESULTS: The motion caused by respiratory activity was effectively computed using the navigator signal. The coefficients of variation (CoV) of average liver voxel in NAV were significantly decreased when compared to breath-hold (BH), with an average reduction of 29.4 ±â€¯18.44% for control images, and 29.89 ±â€¯20.83% for label images (p < 0.001). The resulting maps of normalized ASL signal (normalized to M0) showed significantly higher perfusion weightings in the NAV-compensated VSASL, when compared to the NAV-compensated pCASL techniques. CONCLUSIONS: This study demonstrates the feasibility of using a navigator-based prospective motion compensation technique in conjunction with VSASL for the measurement of liver perfusion without the use of contrast agents while allowing for free-breathing.

3.
NMR Biomed ; : e5173, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38783837

ABSTRACT

PURPOSE: The purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task. METHODS: A five-echo SAGE sequence was developed to quantitatively measure T2 and T2* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T2 and T2* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T2 and T2* were calculated. RESULTS: The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T2 and T2* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T2 (34.7 ± 0.7 ms) and T2* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy. CONCLUSIONS: This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task.

4.
Biomedicines ; 12(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38672109

ABSTRACT

Arterial spin labeling (ASL) has emerged as a promising noninvasive tool for the evaluation of both pediatric and adult arteriovenous malformations (AVMs). This paper reviews the advantages and challenges associated with the use of ASL in AVM assessment. An assessment of the diagnostic workup of AVMs and their variants in both adult and pediatric populations is proposed. Evaluation after treatments, whether endovascular or microsurgical, was similarly examined. ASL, with its endogenous tracer and favorable safety profile, offers functional assessment and arterial feeder identification. ASL has demonstrated strong performance in identifying feeder arteries and detecting arteriovenous shunting, although some studies report inferior performance compared with digital subtraction angiography (DSA) in delineating venous drainage. Challenges include uncertainties in sensitivity for specific AVM features. Detecting AVMs in challenging locations, such as the apical cranial convexity, is further complicated, demanding careful consideration due to the risk of underestimating total blood flow. Navigating these challenges, ASL provides a noninvasive avenue with undeniable merits, but a balanced approach considering its limitations is crucial. Larger-scale prospective studies are needed to comprehensively evaluate the diagnostic performance of ASL in AVM assessment.

5.
Lancet Oncol ; 25(3): 400-410, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423052

ABSTRACT

BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.


Subject(s)
Deep Learning , Glioblastoma , Humans , Artificial Intelligence , Biomarkers , Cohort Studies , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging , Retrospective Studies
6.
Eur Radiol Exp ; 8(1): 6, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191821

ABSTRACT

BACKGROUND: Previous studies on magnetic resonance neurography (MRN) found different patterns of structural nerve damage in type 1 diabetes (T1D) and type 2 diabetes (T2D). Magnetization transfer ratio (MTR) is a quantitative technique to analyze the macromolecular tissue composition. We compared MTR values of the sciatic nerve in patients with T1D, T2D, and healthy controls (HC). METHODS: 3-T MRN of the right sciatic nerve at thigh level was performed in 14 HC, 10 patients with T1D (3 with diabetic neuropathy), and 28 patients with T2D (10 with diabetic neuropathy). Results were subsequently correlated with clinical and electrophysiological data. RESULTS: The sciatic nerve's MTR was lower in patients with T2D (0.211 ± 0.07, mean ± standard deviation) compared to patients with T1D (T1D 0.285 ± 0.03; p = 0.015) and HC (0.269 ± 0.05; p = 0.039). In patients with T1D, sciatic MTR correlated positively with tibial nerve conduction velocity (NCV; r = 0.71; p = 0.021) and negatively with hemoglobin A1c (r = - 0.63; p < 0.050). In patients with T2D, we found negative correlations of sciatic nerve's MTR peroneal NCV (r = - 0.44; p = 0.031) which remained significant after partial correlation analysis controlled for age and body mass index (r = 0.51; p = 0.016). CONCLUSIONS: Lower MTR values of the sciatic nerve in T2D compared to T1D and HC and diametrical correlations of MTR values with NCV in T1D and T2D indicate that there are different macromolecular changes and pathophysiological pathways underlying the development of neuropathic nerve damage in T1D and T2D. TRIAL REGISTRATION: https://classic. CLINICALTRIALS: gov/ct2/show/NCT03022721 . 16 January 2017. RELEVANCE STATEMENT: Magnetization transfer ratio imaging may serve as a non-invasive imaging method to monitor the diseases progress and to encode the pathophysiology of nerve damage in patients with type 1 and type 2 diabetes. KEY POINTS: • Magnetization transfer imaging detects distinct macromolecular nerve lesion patterns in diabetes patients. • Magnetization transfer ratio was lower in type 2 diabetes compared to type 1 diabetes. • Different pathophysiological mechanisms drive nerve damage in type 1 and 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetic Neuropathies/diagnostic imaging , Sciatic Nerve/diagnostic imaging , Thigh
7.
Article in English | MEDLINE | ID: mdl-38215056

ABSTRACT

CONTEXT: Due to the heterogenous clinical symptoms and deficits, the diagnosis of diabetic polyneuropathy (DPN) is still difficult in clinical routine leading to increased morbidity and mortality. OBJECTIVE: We studied the correlation of phase angle (PhA) of bioelectrical impedance analysis (BIA) with clinical, laboratory and physical markers of DPN to evaluate PhA as possible diagnostic method for DPN. MATERIALS AND METHODS: In this cross-sectional observational study as part of the Heidelberg Study on Diabetes and Complications we examined 104 healthy individuals and 205 patients with type 2 diabetes mellitus (T2D), amongst which 63 had DPN. The PhA was calculated from multi-frequency BIA. Nerve conduction studies (NCS), quantitative sensory testing (QST) and diffusion-weighted magnetic resonance neurography (MRN) to determine fractional anisotropy (FA) reflecting peripheral nerve integrity were performed. RESULTS: T2D patients with DPN had lower PhA values (5.71 ± 0.10) compared to T2D patients without DPN (6.07 ± 0.08, p = 0.007, + 6.1%) and healthy controls (6.18 ± 0.08, p < 0.001, + 7.9%). Confounder-adjusted analyses showed correlations of the PhA with conduction velocities and amplitudes of the peroneal (ß=0.28; ß=0.31, p < 0.001) and tibial nerves (ß=0.28; ß=0.32, p < 0.001), Z-scores of QST (thermal detection ß=0.30, p < 0.05) and the FA (ß=0.60, p < 0.001). ROC analysis showed similar performance of PhA in comparison to mentioned diagnostic methods. CONCLUSION: The study shows that PhA is in comparison to other test systems used, at least an equally good and much easier to handle, investigator independent marker for detection of DPN.

8.
Eur J Neurol ; 31(4): e16198, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38235932

ABSTRACT

BACKGROUND AND PURPOSE: It is unknown whether changes to the peripheral nervous system following spinal cord injury (SCI) are relevant for functional recovery or the development of neuropathic pain below the level of injury. Magnetic resonance neurography (MRN) at 3 T allows detection and localization of structural and functional nerve damage. This study aimed to combine MRN and clinical assessments in individuals with chronic SCI and nondisabled controls. METHODS: Twenty participants with chronic SCI and 20 controls matched for gender, age, and body mass index underwent MRN of the L5 dorsal root ganglia (DRG) and the sciatic nerve. DRG volume, sciatic nerve mean cross-sectional area (CSA), fascicular lesion load, and fractional anisotropy (FA), a marker for functional nerve integrity, were calculated. Results were correlated with clinical assessments and nerve conduction studies. RESULTS: Sciatic nerve CSA and lesion load were higher (21.29 ± 5.82 mm2 vs. 14.08 ± 4.62 mm2 , p < 0.001; and 8.70 ± 7.47% vs. 3.60 ± 2.45%, p < 0.001) in individuals with SCI compared to controls, whereas FA was lower (0.55 ± 0.11 vs. 0.63 ± 0.08, p = 0.022). DRG volumes were larger in individuals with SCI who suffered from neuropathic pain compared to those without neuropathic pain (223.7 ± 53.08 mm3 vs. 159.7 ± 55.66 mm3 , p = 0.043). Sciatic MRN parameters correlated with electrophysiological results but did not correlate with the extent of myelopathy or clinical severity of SCI. CONCLUSIONS: Individuals with chronic SCI are subject to a decline of structural peripheral nerve integrity that may occur independently from the clinical severity of SCI. Larger volumes of DRG in SCI with neuropathic pain support existing evidence from animal studies on SCI-related neuropathic pain.


Subject(s)
Neuralgia , Spinal Cord Injuries , Animals , Humans , Clinical Relevance , Sciatic Nerve , Spinal Cord Injuries/pathology , Magnetic Resonance Spectroscopy , Spinal Cord , Magnetic Resonance Imaging/methods
9.
Diabetologia ; 67(2): 275-289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38019287

ABSTRACT

AIMS/HYPOTHESIS: Quantitative sensory testing (QST) allows the identification of individuals with rapid progression of diabetic sensorimotor polyneuropathy (DSPN) based on certain sensory phenotypes. Hence, the aim of this study was to investigate the relationship of these phenotypes with the structural integrity of the sciatic nerve among individuals with type 2 diabetes. METHODS: Seventy-six individuals with type 2 diabetes took part in this cross-sectional study and underwent QST of the right foot and high-resolution magnetic resonance neurography including diffusion tensor imaging of the right distal sciatic nerve to determine the sciatic nerve fractional anisotropy (FA) and cross-sectional area (CSA), both of which serve as markers of structural integrity of peripheral nerves. Participants were then assigned to four sensory phenotypes (participants with type 2 diabetes and healthy sensory profile [HSP], thermal hyperalgesia [TH], mechanical hyperalgesia [MH], sensory loss [SL]) by a standardised sorting algorithm based on QST. RESULTS: Objective neurological deficits showed a gradual increase across HSP, TH, MH and SL groups, being higher in MH compared with HSP and in SL compared with HSP and TH. The number of participants categorised as HSP, TH, MH and SL was 16, 24, 17 and 19, respectively. There was a gradual decrease of the sciatic nerve's FA (HSP 0.444, TH 0.437, MH 0.395, SL 0.382; p=0.005) and increase of CSA (HSP 21.7, TH 21.5, MH 25.9, SL 25.8 mm2; p=0.011) across the four phenotypes. Further, MH and SL were associated with a lower sciatic FA (MH unstandardised regression coefficient [B]=-0.048 [95% CI -0.091, -0.006], p=0.027; SL B=-0.062 [95% CI -0.103, -0.020], p=0.004) and CSA (MH ß=4.3 [95% CI 0.5, 8.0], p=0.028; SL B=4.0 [95% CI 0.4, 7.7], p=0.032) in a multivariable regression analysis. The sciatic FA correlated negatively with the sciatic CSA (r=-0.35, p=0.002) and markers of microvascular damage (high-sensitivity troponin T, urine albumin/creatinine ratio). CONCLUSIONS/INTERPRETATION: The most severe sensory phenotypes of DSPN (MH and SL) showed diminishing sciatic nerve structural integrity indexed by lower FA, likely representing progressive axonal loss, as well as increasing CSA of the sciatic nerve, which cannot be detected in individuals with TH. Individuals with type 2 diabetes may experience a predefined cascade of nerve fibre damage in the course of the disease, from healthy to TH, to MH and finally SL, while structural changes in the proximal nerve seem to precede the sensory loss of peripheral nerves and indicate potential targets for the prevention of end-stage DSPN. TRIAL REGISTRATION: ClinicalTrials.gov NCT03022721.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diffusion Tensor Imaging/methods , Cross-Sectional Studies , Sciatic Nerve , Phenotype
10.
Clin Neuroradiol ; 34(1): 55-66, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37548682

ABSTRACT

INTRODUCTION/AIMS: Diabetic small fiber neuropathy (SFN) is caused by damage to thinly myelinated A­fibers (δ) and unmyelinated C­fibers. This study aimed to assess associations between quantitative sensory testing (QST) and parameters of peripheral nerve perfusion obtained from dynamic contrast enhanced (DCE) magnetic resonance neurography (MRN) in type 2 diabetes patients with and without SFN. METHODS: A total of 18 patients with type 2 diabetes (T2D, 8 with SFN, 10 without SFN) and 10 healthy controls (HC) took part in this cross-sectional single-center study and underwent QST of the right leg and DCE-MRN of the right thigh with subsequent calculation of the sciatic nerve constant of capillary permeability (Ktrans), extravascular extracellular volume fraction (Ve), and plasma volume fraction (Vp). RESULTS: The Ktrans (HC 0.031 min-1 ± 0.009, T2D 0.043 min-1 ± 0.015; p = 0.033) and Ve (HC 1.2% ± 1.5, T2D: 4.1% ± 5.1; p = 0.027) were lower in T2D patients compared to controls. In T2D patients, compound z­scores of thermal and mechanical detection correlated with Ktrans (r = 0.73; p = 0.001, and r = 0.57; p = 0.018, respectively) and Ve (r = 0.67; p = 0.002, and r = 0.69; p = 0.003, respectively). Compound z­scores of thermal pain and Vp (r = -0.57; p = 0.015) correlated negatively. DISCUSSION: The findings suggest that parameters of peripheral nerve microcirculation are related to different symptoms in SFN: A reduced capillary permeability may result in a loss of function related to insufficient nutritional supply, whereas increased capillary permeability may be accompanied by painful symptoms related to a gain of function.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Cross-Sectional Studies , Pain/complications , Sciatic Nerve , Perfusion , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging
11.
Magn Reson Imaging ; 105: 75-81, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939972

ABSTRACT

PURPOSE: To apply multi-shot high-resolution multi inversion spin and gradient echo (MI-SAGE) acquisition for simultaneous liver T1, T2 and T2* mapping. METHODS: Inversion prepared spin- and gradient-echo EPI was developed with ascending slice order across measurements for efficient acquisition with T1, T2, and T2⁎ weighting. Multi-shot EPI was also implemented to minimize distortion and blurring while enabling high in-plane resolution. A dictionary-matching approach was used to fit the images to quantitative parameter maps, which were compared to T1 measured by modified Look-Locker (MOLLI), T1 measured by variable flip angle (VFA), T2 measured by multiple echo time-based Half Fourier Single-shot Turbo spin-Echo (HASTE), T2 measured by radial turbo-spin-echo (rTSE) and T2⁎ measured by multiple gradient echo (MGRE) sequences. RESULTS: The multi-shot variant of the sequence achieved higher in-plane resolution of 1.7 × 1.7 mm2 with good image quality in 28 s. Derived quantitative maps showed comparable values to conventional mapping methods. As measured in phantom and in vivo, MOLLI, MESE and MGRE give closest values to MISAGE. VFA, HASTE and rTSE show obvious overestimation. CONCLUSIONS: The proposed multi-shot inversion prepared spin- and gradient-echo EPI sequence allows for high-resolution quantitative T1, T2 and T2 liver tissue characterization in a single breath-hold scan.


Subject(s)
Liver , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Liver/diagnostic imaging , Breath Holding , Phantoms, Imaging
12.
J Clin Endocrinol Metab ; 109(1): e137-e144, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37579325

ABSTRACT

CONTEXT: Insulin-mediated microvascular permeability and blood flow of skeletal muscle appears to be altered in the condition of insulin resistance. Previous studies on this effect used invasive procedures in humans or animals. OBJECTIVE: The aim of this study was to demonstrate the feasibility of a noninvasive assessment of human muscle microcirculation via dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of skeletal muscle in patients with type 2 diabetes (T2D). METHODS: A total of 56 participants (46 with T2D, 10 healthy controls [HC]) underwent DCE-MRI of the right thigh at 3 Tesla. The constant of the musculature's microvascular permeability (Ktrans), extravascular extracellular volume fraction (ve), and plasma volume fraction (vp) were calculated. RESULTS: In T2D patients, skeletal muscle Ktrans was lower (HC 0.0677 ± 0.002 min-1, T2D 0.0664 ± 0.002 min-1; P = 0.042) while the homeostasis model assessment (HOMA) index was higher in patients with T2D compared to HC (HC 2.72 ± 2.2, T2D 6.11 ± 6.2; P = .011). In T2D, Ktrans correlated negatively with insulin (r = -0.39, P = .018) and HOMA index (r = -0.38, P = .020). CONCLUSION: The results signify that skeletal muscle DCE-MRI can be employed as a noninvasive technique for the assessment of muscle microcirculation in T2D. Our findings suggest that microvascular permeability of skeletal muscle is lowered in patients with T2D and that a decrease in microvascular permeability is associated with insulin resistance. These results are of interest with regard to the impact of muscle perfusion on diabetic complications such as diabetic sarcopenia.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Insulins , Humans , Capillary Permeability , Contrast Media , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Thigh
13.
Methods Mol Biol ; 2660: 283-294, 2023.
Article in English | MEDLINE | ID: mdl-37191805

ABSTRACT

During tumor growth, the complex composition of vasculature is prone to dynamic changes due to mechanic and biochemical challenges. Perivascular invasion of tumor cells to co-opt existing vasculature, but also formation of de-novo vasculature and other effects on the vascular network, may lead to altered geometric vessel properties as well as changes in vascular network topology, which is defined by vascular multifurcations and connections between vessel segments. The intricate organization and heterogeneity of the vascular network can be analyzed with advanced computational methods to uncover vascular network signatures that may allow differentiating between pathological and physiological vessel regions. Herein, we present a protocol to evaluate vascular heterogeneity in whole vascular networks, using morphological and topological measures. The protocol was developed for single plane illumination microscopy images of mice brain vasculature but can be applied to any vascular network.


Subject(s)
Cardiovascular System , Neoplasms , Mice , Animals , Microscopy , Lighting
14.
Radiologie (Heidelb) ; 63(5): 346-353, 2023 May.
Article in German | MEDLINE | ID: mdl-37186291

ABSTRACT

PROBLEM: If no obvious primary tumour is detectable in metastatic tumours (cancer of unknown primary, CUP), it should nevertheless be identified if possible, as specific therapy achieves better results than empirical, palliative treatment of CUP. METHODOLOGY: The new guideline of the European Society of Medical Oncology (ESMO) defines algorithms for the evaluation of CUP, in which radiological and nuclear imaging procedures play a central role. Important clues to a possible primary tumour are the size and morphology of foci and the presence of a dominant lesion, as well as the pattern of hematogeneous metastatic spread in affected organs, and the anatomical distribution of affected lymph nodes. CONCLUSION: In patients with metastases, imaging plays an important role in identifying a possible primary tumour, but the diagnosis must be made with knowledge of the clinical and immunohistochemical results. In difficult cases, there should be interdisciplinary consultation between reference oncology, radiology, and pathology on the presence of CUP.


Subject(s)
Diagnostic Imaging , Radiology , Humans , Diagnostic Imaging/methods , Radiography
15.
Invest Radiol ; 58(10): 754-765, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37222527

ABSTRACT

OBJECTIVES: In multiple myeloma and its precursor stages, plasma cell infiltration (PCI) and cytogenetic aberrations are important for staging, risk stratification, and response assessment. However, invasive bone marrow (BM) biopsies cannot be performed frequently and multifocally to assess the spatially heterogenous tumor tissue. Therefore, the goal of this study was to establish an automated framework to predict local BM biopsy results from magnetic resonance imaging (MRI). MATERIALS AND METHODS: This retrospective multicentric study used data from center 1 for algorithm training and internal testing, and data from center 2 to 8 for external testing. An nnU-Net was trained for automated segmentation of pelvic BM from T1-weighted whole-body MRI. Radiomics features were extracted from these segmentations, and random forest models were trained to predict PCI and the presence or absence of cytogenetic aberrations. Pearson correlation coefficient and the area under the receiver operating characteristic were used to evaluate the prediction performance for PCI and cytogenetic aberrations, respectively. RESULTS: A total of 672 MRIs from 512 patients (median age, 61 years; interquartile range, 53-67 years; 307 men) from 8 centers and 370 corresponding BM biopsies were included. The predicted PCI from the best model was significantly correlated ( P ≤ 0.01) to the actual PCI from biopsy in all internal and external test sets (internal test set: r = 0.71 [0.51, 0.83]; center 2, high-quality test set: r = 0.45 [0.12, 0.69]; center 2, other test set: r = 0.30 [0.07, 0.49]; multicenter test set: r = 0.57 [0.30, 0.76]). The areas under the receiver operating characteristic of the prediction models for the different cytogenetic aberrations ranged from 0.57 to 0.76 for the internal test set, but no model generalized well to all 3 external test sets. CONCLUSIONS: The automated image analysis framework established in this study allows for noninvasive prediction of a surrogate parameter for PCI, which is significantly correlated to the actual PCI from BM biopsy.


Subject(s)
Deep Learning , Multiple Myeloma , Male , Humans , Middle Aged , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/genetics , Bone Marrow/diagnostic imaging , Retrospective Studies , Magnetic Resonance Imaging/methods , Biopsy , Chromosome Aberrations
16.
Front Endocrinol (Lausanne) ; 14: 1046690, 2023.
Article in English | MEDLINE | ID: mdl-37008917

ABSTRACT

Background: Diabetic sensorimotor polyneuropathy (DSPN) is one of the most prevalent and poorly understood diabetic microvascular complications. Recent studies have found that fractional anisotropy (FA), a marker for microstructural nerve integrity, is a sensitive parameter for the structural and functional nerve damage in DSPN. The aim of this study was to investigate the significance of proximal sciatic nerve's FA on different distal nerve fiber deficits of the upper and lower limbs and its correlation with the neuroaxonal biomarker, neurofilament light chain protein (NfL). Materials and methods: Sixty-nine patients with type 2 diabetes (T2DM) and 30 healthy controls underwent detailed clinical and electrophysiological assessments, complete quantitative sensory testing (QST), and diffusion-weighted magnetic resonance neurography of the sciatic nerve. NfL was measured in the serum of healthy controls and patients with T2DM. Multivariate models were used to adjust for confounders of microvascular damage. Results: Patients with DSPN showed a 17% lower sciatic microstructural integrity compared to healthy controls (p<0.001). FA correlated with tibial and peroneal motor nerve conduction velocity (NCV) (r=0.6; p<0.001 and r=0.6; p<0.001) and sural sensory NCV (r=0.50; p<0.001). Participants with reduced sciatic nerve´s FA showed a loss of function of mechanical and thermal sensation of upper (r=0.3; p<0.01 and r=0.3; p<0.01) and lower (r=0.5; p<0.001 and r=0.3; p=<0.01) limbs and reduced functional performance of upper limbs (Purdue Pegboard Test for dominant hand; r=0.4; p<0.001). Increased levels of NfL and urinary albumin-creatinine ratio (ACR) were associated with loss of sciatic nerve´s FA (r=-0.5; p<0.001 and r= -0.3, p= 0.001). Of note, there was no correlation between sciatic FA and neuropathic symptoms or pain. Conclusion: This is the first study showing that microstructural nerve integrity is associated with damage of different nerve fiber types and a neuroaxonal biomarker in DSPN. Furthermore, these findings show that proximal nerve damage is related to distal nerve function even before clinical symptoms occur. The microstructure of the proximal sciatic nerve and is also associated with functional nerve fiber deficits of the upper and lower limbs, suggesting that diabetic neuropathy involves structural changes of peripheral nerves of upper limbs too.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diabetes Mellitus, Type 2/pathology , Anisotropy , Intermediate Filaments , Sciatic Nerve/diagnostic imaging , Sciatic Nerve/pathology , Diabetic Neuropathies/complications , Lower Extremity/diagnostic imaging , Biomarkers
17.
Biophys J ; 122(8): 1459-1469, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36905121

ABSTRACT

Mitochondrial inner membrane potentials in cardiomyocytes may oscillate in cycles of depolarization/repolarization when the mitochondrial network is exposed to metabolic or oxidative stress. The frequencies of such oscillations are dynamically changing while clusters of weakly coupled mitochondrial oscillators adjust to a common phase and frequency. Across the cardiac myocyte, the averaged signal of the mitochondrial population follows self-similar or fractal dynamics; however, fractal properties of individual mitochondrial oscillators have not yet been examined. We show that the largest synchronously oscillating cluster exhibits a fractal dimension, D, that is indicative of self-similar behavior with D=1.27±0.11, in contrast to the remaining network mitochondria whose fractal dimension is close to that of Brownian noise, D=1.58±0.10. We further demonstrate that fractal behavior is correlated with local coupling mechanisms, whereas it is only weakly linked to measures of functional connections between mitochondria. Our findings suggest that individual mitochondrial fractal dimensions may serve as a simple measure of local mitochondrial coupling.


Subject(s)
Fractals , Mitochondria , Oxidative Stress , Membrane Potential, Mitochondrial , Mitochondrial Membranes
18.
Magn Reson Med ; 90(1): 231-239, 2023 07.
Article in English | MEDLINE | ID: mdl-36806110

ABSTRACT

PURPOSE: To apply a navigator-based slice-tracking method to prospectively compensate respiratory motion for kidney pseudo-continuous arterial spin labeling (pCASL), using spin-echo (SE) EPI acquisition. METHODS: A single gradient-echo slice selection and projection readout at the location of the diaphragm along the inferior-superior direction was applied as a navigator. Navigator acquisition and fat suppression were inserted before each transverse imaging slice of the readouts of a 2D-SE-EPI-based pCASL sequence. Motion information was calculated after exclusion of the signal saturation in the navigator signal caused by EPI excitations. The motion information was then used to directly adjust the slice positioning in real time. RESULTS: The respiratory motion from the navigator signal was calculated, and slice positioning was changed in real time based on the motion information. We could show that motion compensation reduces kidney movement, and that the coefficients of variation across renal perfusion values were significantly reduced when motion correction was applied. The average reduction of coefficients of variation was approximately 20%, resulting in a more accurate and detailed structure of the respective perfusion maps. CONCLUSIONS: This study demonstrates the feasibility of a navigator-based slice-tracking technique in kidney imaging with a SE-EPI readout pCASL sequence to reduce kidney motion.


Subject(s)
Arteries , Brain , Spin Labels , Motion , Kidney/diagnostic imaging
19.
Magn Reson Imaging ; 98: 26-35, 2023 05.
Article in English | MEDLINE | ID: mdl-36603781

ABSTRACT

OBJECTIVES: To apply a navigator-based slice tracking method to prospectively compensate the respiratory motion for kidney vessel architecture imaging (VAI). MATERIALS AND METHODS: A dual gradient echo spin echo 2D EPI sequence was developed for kidney VAI. A single gradient-echo slice selection and projection readout at the location of the diaphragm along the inferior-superior direction was applied as a navigator. Navigator acquisition and fat suppression were inserted before each transverse imaging slice. Motion information was calculated after exclusion of the signal saturation in the navigator signal caused by imaging slices. The motion information was then directly sent back to the sequence and slice positioning was adjusted in real-time. The whole sequence was applied during a contrast agent pass-through. RESULTS: VAI parametric maps show the structural heterogeneity of the renal vasculature. The respiratory motion from the navigator signal was precisely calculated and slice positioning was changed in real-time based on the motion information. The vibration amplitude of the signal intensity of the liver tissue at the liver-lung interface in the case of prospective motion correction (PMC) on is about 28% of the PMC off case. Compared to the case of PMC off, the coefficient of variation was reduced 30% of the case of PMC on. CONCLUSIONS: This study demonstrates the feasibility of the motion-compensating technique in kidney VAI. The sequence may improve the evaluation of microvasculature in kidney diseases.


Subject(s)
Contrast Media , Liver , Prospective Studies , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Motion , Artifacts
20.
Invest Radiol ; 58(4): 253-264, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36165988

ABSTRACT

OBJECTIVES: Despite the extensive number of publications in the field of radiomics, radiomics algorithms barely enter large-scale clinical application. Supposedly, the low external generalizability of radiomics models is one of the main reasons, which hinders the translation from research to clinical application. The objectives of this study were to investigate reproducibility of radiomics features (RFs) in vivo under variation of patient positioning, magnetic resonance imaging (MRI) sequence, and MRI scanners, and to identify a subgroup of RFs that shows acceptable reproducibility across all different acquisition scenarios. MATERIALS AND METHODS: Between November 30, 2020 and February 16, 2021, 55 patients with monoclonal plasma cell disorders were included in this prospective, bi-institutional, single-vendor study. Participants underwent one reference scan at a 1.5 T MRI scanner and several retest scans: once after simple repositioning, once with a second MRI protocol, once at another 1.5 T scanner, and once at a 3 T scanner. Radiomics feature from the bone marrow of the left hip bone were extracted, both from original scans and after different image normalizations. Intraclass correlation coefficient (ICC) was used to assess RF repeatability and reproducibility. RESULTS: Fifty-five participants (mean age, 59 ± 7 years; 36 men) were enrolled. For T1-weighted images after muscle normalization, in the simple test-retest experiment, 110 (37%) of 295 RFs showed an ICC ≥0.8: 54 (61%) of 89 first-order features (FOFs), 35 (95%) of 37 volume and shape features, and 21 (12%) of 169 texture features (TFs). When the retest was performed with different technical settings, even after muscle normalization, the number of FOF/TF with an ICC ≥0.8 declined to 58/13 for the second protocol, 29/7 for the second 1.5 T scanner, and 49/7 for the 3 T scanner, respectively. Twenty-five (28%) of the 89 FOFs and 6 (4%) of the 169 TFs from muscle-normalized T1-weighted images showed an ICC ≥0.8 throughout all repeatability and reproducibility experiments. CONCLUSIONS: In vivo, only few RFs are reproducible with different MRI sequences or different MRI scanners, even after application of a simple image normalization. Radiomics features selected by a repeatability experiment only are not necessarily suited to build radiomics models for multicenter clinical application. This study isolated a subset of RFs, which are robust to variations in MRI acquisition observed in scanners from 1 vendor, and therefore are candidates to build reproducible radiomics models for monoclonal plasma cell disorders for multicentric applications, at least when centers are equipped with scanners from this vendor.


Subject(s)
Image Processing, Computer-Assisted , Plasma Cells , Male , Humans , Middle Aged , Aged , Prospective Studies , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL