Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Neurosci Lett ; 822: 137628, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38191088

ABSTRACT

Dorsal root ganglia (DRG) neurons transduce and convey somatosensory information from the periphery to the central nervous system. Adrenergic mediators are known to modulate nociceptive inputs in DRG neurons, acting as up- or down-regulators of neuronal excitability. They are also important in the development of sympathetic neuropathy. ATP-activated P2X channels and capsaicin-activated TRPV1 channels are directly involved in the transduction of nociceptive stimuli. In this work, we show that long-term (up to 3 days) in vitro stimulation of DRG neurons with selective α1-adrenergic agonist increased slow but not fast ATP-activated currents, with no effect on capsaicin currents. Selective agonists for α2, ß1 and ß3-adrenergic receptors decreased capsaicin activated currents and had no effect on ATP currents. Capsaicin currents were associated with increased neuronal excitability, while none of the adrenergic modulators produced change in rheobase. These results demonstrate that chronic adrenergic activation modulates two nociceptive transducer molecules, increasing or decreasing channel current depending on the adrenergic receptor subtype. These observations aid our understanding of nociceptive or antinociceptive effects of adrenergic agonists.


Subject(s)
Adrenergic Agonists , Capsaicin , Capsaicin/pharmacology , Adrenergic Agonists/pharmacology , Nociception , Ion Channels/pharmacology , Adenosine Triphosphate/pharmacology , Ganglia, Spinal , TRPV Cation Channels
2.
J Neurophysiol ; 130(1): 5-22, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37222444

ABSTRACT

The dorsal cochlear nucleus (DCN) in the auditory brainstem integrates auditory and somatosensory information. Mature DCN fusiform neurons fall into two qualitatively distinct types: quiet, with no spontaneous regular action potential firing, or active, with regular spontaneous action potential firing. However, how these firing states and other electrophysiological properties of fusiform neurons develop during early postnatal days to adulthood is not known. Thus, we recorded fusiform neurons from mice from P4 to P21 and analyzed their electrophysiological properties. In the prehearing phase (P4-P13), we found that most fusiform neurons are quiet, with active neurons emerging after hearing onset at P14. Subthreshold properties underwent significant changes before hearing onset, whereas changes to the action potential waveform occurred mainly after P14, with the depolarization and repolarization phases becoming markedly faster and half-width significantly decreased. The activity threshold in posthearing neurons was more negative than in prehearing cells. Persistent sodium current (INaP) was increased after P14, coinciding with the emergence of spontaneous firing. Thus, we suggest that posthearing expression of INaP leads to hyperpolarization of the activity threshold and the active state of the fusiform neuron. At the same time, other changes refine the passive membrane properties and increase the speed of action potential firing of fusiform neurons.NEW & NOTEWORTHY Auditory brainstem neurons express unique electrophysiological properties adapted for their complex physiological functions that develop before hearing onset. Fusiform neurons of the DCN present two firing states, quiet and active, but the origin of these states is not known. Here, we showed that the quiet and active states develop after hearing onset at P14, along with changes in action potentials, suggesting an influence of auditory input on the refining of fusiform neuron's excitability.


Subject(s)
Cochlear Nucleus , Animals , Mice , Hearing , Neurons , Action Potentials , Brain Stem
3.
STAR Protoc ; 3(1): 101144, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35199028

ABSTRACT

This protocol provides instructions to acquire high-quality cellular contractility data from adult, neonatal, and human induced pluripotent stem cell-derived cardiomyocytes. Contractility parameters are key to unravel mechanisms underlying cardiac pathologies, yet difficulties in acquiring data can compromise measurement accuracy and reproducibility. We provide optimized steps for microscope and camera setup, as well as cellular selection criteria for different cardiomyocyte cell types, aiming to obtain robust and reliable data. Moreover, we use CONTRACTIONWAVE software to analyze and show the optimized results. For complete details on the use and execution of this profile, please refer to Scalzo et al. (2021).


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Infant, Newborn , Microscopy , Myocytes, Cardiac/metabolism , Reproducibility of Results
4.
Cerebellum ; 20(2): 186-202, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33098550

ABSTRACT

Thiamine deficiency is associated with cerebellar dysfunction; however, the consequences of thiamine deficiency on the electrophysiological properties of cerebellar Purkinje cells are poorly understood. Here, we evaluated these parameters in brain slices containing cerebellar vermis. Adult mice were maintained for 12-13 days on a thiamine-free diet coupled with daily injections of pyrithiamine, an inhibitor of thiamine phosphorylation. Morphological analysis revealed a 20% reduction in Purkinje cell and nuclear volume in thiamine-deficient animals compared to feeding-matched controls, with no reduction in cell count. Under whole-cell current clamp, thiamine-deficient Purkinje cells required significantly less current injection to fire an action potential. This reduction in rheobase was not due to a change in voltage threshold. Rather, thiamine-deficient neurons presented significantly higher input resistance specifically in the voltage range just below threshold, which increases their sensitivity to current at these critical membrane potentials. In addition, thiamine deficiency caused a significant decrease in the amplitude of the action potential afterhyperpolarization, broadened the action potential, and decreased the current threshold for depolarization block. When thiamine-deficient animals were allowed to recover for 1 week on a normal diet, rheobase, threshold, action potential half-width, and depolarization block threshold were no longer different from controls. We conclude that thiamine deficiency causes significant but reversible changes to the electrophysiology properties of Purkinje cells prior to pathological morphological alterations or cell loss. Thus, the data obtained in the present study indicate that increased excitability of Purkinje cells may represent a leading indicator of cerebellar dysfunction caused by lack of thiamine.


Subject(s)
Purkinje Cells/pathology , Thiamine Deficiency/pathology , Thiamine Deficiency/physiopathology , Action Potentials/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Patch-Clamp Techniques
5.
Cell Rep Methods ; 1(4): 100044, 2021 08 23.
Article in English | MEDLINE | ID: mdl-35475144

ABSTRACT

Cell membrane deformation is an important feature that occurs during many physiological processes, and its study has been put to good use to investigate cardiomyocyte function. Several methods have been developed to extract information on cardiomyocyte contractility. However, no existing computational framework has provided, in a single platform, a straightforward approach to acquire, process, and quantify this type of cellular dynamics. For this reason, we develop CONTRACTIONWAVE, high-performance software written in Python programming language that allows the user to process large data image files and obtain contractility parameters by analyzing optical flow from images obtained with videomicroscopy. The software was validated by using neonatal, adult-, and human-induced pluripotent stem-cell-derived cardiomyocytes, treated or not with drugs known to affect contractility. Results presented indicate that CONTRACTIONWAVE is an excellent tool for examining changes to cardiac cellular contractility in animal models of disease and for pharmacological and toxicology screening during drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Optic Flow , Animals , Infant, Newborn , Humans , Software , Myocytes, Cardiac , Cells, Cultured
6.
Neuropeptides ; 83: 102076, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32800589

ABSTRACT

The basolateral amygdala (BLA) is critical in the control of the sympathetic output during stress. Studies demonstrated the involvement of the renin-angiotensin system components in the BLA. Angiotensin-(1-7) [Ang-(1-7)], acting through Mas receptors, reduces stress effects. Considering that angiotensin-converting enzyme 2 (ACE2) is the principal enzyme for the production of Ang-(1-7), here we evaluate the cardiovascular reactivity to acute stress after administration of the ACE2 activator, diminazene aceturate (DIZE) into the BLA. We also tested whether systemic treatment with DIZE could modify synaptic activity in the BLA and its effect directly on the expression of the N-methyl-d-aspartate receptors (NMDARs) in NG108 neurons in-vitro. Administration of DIZE into the BLA (200 pmol/100 nL) attenuated the tachycardia to stress (ΔHR, bpm: vehicle = 103 ± 17 vs DIZE = 49 ± 7 p = 0.018); this effect was inhibited by Ang-(1-7) antagonist, A-779 (ΔHR, bpm: DIZE = 49 ± 7 vs A-779 + DIZE = 100 ± 15 p = 0.04). Systemic treatment with DIZE attenuated the excitatory synaptic activity in the BLA (Frequency (Hz): vehicle = 2.9 ± 0.4 vs. DIZE =1.8 ± 0.3 p < 0.04). NG108 cells treated with DIZE demonstrated decreased expression of l subunit NMDAR-NR1 (NR1 expression (a.u): control = 0.534 ± 0.0593 vs. DIZE = 0.254 ± 0.0260) of NMDAR and increases of Mas receptors expression. These data demonstrate that DIZE attenuates the tachycardia evoked by acute stress. This effect results from a central action in the BLA involving activation of Mas receptors. The ACE2 activation via DIZE treatment attenuated the frequency of excitatory synaptic activity in the basolateral amygdala and this effect can be related with the decreases of the NMDAR-NR1 receptor expression.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Basolateral Nuclear Complex/drug effects , Diminazene/analogs & derivatives , Glutamic Acid/metabolism , Heart Rate/drug effects , Neurons/drug effects , Tachycardia/metabolism , Angiotensin I/antagonists & inhibitors , Angiotensin II/analogs & derivatives , Angiotensin II/pharmacology , Animals , Basolateral Nuclear Complex/metabolism , Diminazene/pharmacology , Neurons/metabolism , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/pharmacology , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism
7.
Biochimie ; 176: 138-149, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32717411

ABSTRACT

Spider venoms, despite their toxicity, represent rich sources of pharmacologically active compounds with biotechnological potential. However, in view of the large diversity of the spider species, the full potential of their venom molecules is still far from being known. In this work, we report the purification and structural and functional characterization of GiTx1 (ß/κ-TRTX-Gi1a), the first toxin purified from the venom of the Brazilian tarantula spider Grammostola iheringi. GiTx1 was purified by chromatography, completely sequenced through automated Edman degradation and tandem mass spectrometry and its structure was predicted by molecular modeling. GiTx1 has a MW of 3.585 Da, with the following amino acid sequence: SCQKWMWTCDQKRPCCEDMVCKLWCKIIK. Pharmacological activity of GiTx1 was characterized by electrophysiology using whole-cell patch clamp on dorsal root ganglia neurons (DRG) and two-electrode voltage-clamp on voltage-gated sodium and potassium channels subtypes expressed in Xenopus laevis oocytes. GiTx1, at 2 µM, caused a partial block of inward (∼40%) and outward (∼20%) currents in DRG cells, blocked rNav1.2, rNav1.4 and mNav1.6 and had a significant effect on VdNav, an arachnid sodium channel isoform. IC50 values of 156.39 ± 14.90 nM for Nav1.6 and 124.05 ± 12.99 nM for VdNav, were obtained. In addition, this toxin was active on rKv4.3 and hERG potassium channels, but not Shaker IR or rKv2.1 potassium channels. In summary, GiTx1 is a promiscuous toxin with multiple effects on different types of ion channels.


Subject(s)
Potassium Channels, Voltage-Gated , Spider Venoms , Spiders/chemistry , Voltage-Gated Sodium Channel Blockers , Voltage-Gated Sodium Channels/metabolism , Animals , Houseflies , Humans , Mice , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Potassium Channels, Voltage-Gated/metabolism , Protein Domains , Rats , Rats, Wistar , Spider Venoms/chemistry , Spider Venoms/isolation & purification , Spider Venoms/toxicity , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/isolation & purification , Voltage-Gated Sodium Channel Blockers/toxicity , Voltage-Gated Sodium Channels/chemistry
8.
Synapse ; 74(3): e22137, 2020 03.
Article in English | MEDLINE | ID: mdl-31584700

ABSTRACT

We examined effects of Group I metabotropic glutamate receptors on the excitability of mouse medial nucleus of the trapezoid body (MNTB) neurons. The selective agonist, S-3,5-dihydroxyphenylglycine (DHPG), evoked a dose-dependent depolarization of the resting potential, increased membrane resistance, increased sag depolarization, and promoted rebound action potential firing. Under voltage-clamp, DHPG evoked an inward current, referred to as IDHPG , which was developmentally stable through postnatal day P56. IDHPG had low temperature dependence in the range 25-34°C, consistent with a channel mechanism. However, the I-V relationship took the form of an inverted U that did not reverse at the calculated Nernst potential for K+ or Cl- . Thus, it is likely that more than one ion type contributes to IDHPG and the mix may be voltage dependent. IDHPG was resistant to the Na+ channel blockers tetrodotoxin and amiloride, and to inhibitors of iGluR (CNQX and MK801). IDHPG was inhibited 21% by Ba2+ (500 µM), 60% by ZD7288 (100 µM) and 73% when the two antagonists were applied together, suggesting that KIR channels and HCN channels contribute to the current. Voltage clamp measurements of IH indicated a small (6%) increase in Gmax by DHPG with no change in the voltage dependence. DHPG reduced action potential rheobase and reduced the number of post-synaptic AP failures during high frequency stimulation of the calyx of Held. Thus, activation of post-synaptic Group I mGlu receptors modifies the excitability of MNTB neurons and contributes to the reliability of high frequency firing in this auditory relay nucleus.


Subject(s)
Action Potentials , Excitatory Amino Acid Agents/pharmacology , Receptors, Metabotropic Glutamate/metabolism , Synaptic Potentials , Trapezoid Body/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Amiloride/pharmacology , Animals , Dizocilpine Maleate/pharmacology , Female , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Male , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism , Pyrimidines/pharmacology , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Trapezoid Body/cytology , Trapezoid Body/drug effects , Trapezoid Body/physiology
9.
Neuropharmacology ; 162: 107826, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31647972

ABSTRACT

Capsaicin, an agonist of TRPV1, evokes intracellular [Ca2+] transients and glutamate release from perfused trigeminal ganglion. The spider toxin PnTx3-5, native or recombinant is more potent than the selective TRPV1 blocker SB-366791 with IC50 of 47 ±â€¯0.18 nM, 45 ±â€¯1.18 nM and 390 ±â€¯5.1 nM in the same experimental conditions. PnTx3-5 is thus more potent than the selective TRPV1 blocker SB-366791. PnTx3-5 (40 nM) and SB-366791 (3 µM) also inhibited the capsaicin-induced increase in intracellular Ca2+ in HEK293 cells transfected with TRPV1 by 75 ±â€¯16% and 84 ±â€¯3.2%, respectively. In HEK293 cells transfected with TRPA1, cinnamaldehyde (30 µM) generated an increase in intracellular Ca2+ that was blocked by the TRPA1 antagonist HC-030031 (10 µM, 89% inhibition), but not by PnTx3-5 (40 nM), indicating selectivity of the toxin for TRPV1. In whole-cell patch-clamp experiments on HEK293 cells transfected with TRPV1, capsaicin (10 µM) generated inward currents that were blocked by SB-366791 and by both native and recombinant PnTx3-5 by 47 ±â€¯1.4%; 54 ±â€¯7.8% and 56 ±â€¯9.0%, respectively. Intradermal injection of capsaicin into the rat left vibrissa induced nociceptive behavior that was blocked by pre-injection with either SB-366791 (3 nmol/site i.d., 83.3 ±â€¯7.2% inhibition) or PnTx3-5 (100 fmol/site, 89 ±â€¯8.4% inhibition). We conclude that both native and recombinant PnTx3-5 are potent TRPV1 receptor antagonists with antinociceptive action on pain behavior evoked by capsaicin.


Subject(s)
Calcium Signaling/drug effects , Capsaicin/pharmacology , Facial Pain/metabolism , Neuropeptides/pharmacology , Nociception/drug effects , Sensory System Agents/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Trigeminal Ganglion/drug effects , Acrolein/analogs & derivatives , Acrolein/pharmacology , Anilides/pharmacology , Animals , Calcium/metabolism , Cinnamates/pharmacology , Disease Models, Animal , Glutamic Acid/drug effects , Glutamic Acid/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Male , Patch-Clamp Techniques , Rats , TRPA1 Cation Channel/drug effects , TRPA1 Cation Channel/genetics , TRPV Cation Channels/genetics , Transfection , Trigeminal Ganglion/metabolism
11.
Neurochem Int ; 116: 30-42, 2018 06.
Article in English | MEDLINE | ID: mdl-29530757

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by chorea, incoordination and psychiatric and behavioral symptoms. The leading cause of death in HD patients is aspiration pneumonia, associated with respiratory dysfunction, decreased respiratory muscle strength and dysphagia. Although most of the motor symptoms are derived from alterations in the central nervous system, some might be associated with changes in the components of motor units (MU). To explore this hypothesis, we evaluated morphofunctional aspects of the diaphragm muscle in a mouse model for HD (BACHD). We showed that the axons of the phrenic nerves were not affected in 12-months-old BACHD mice, but the axon terminals that form the neuromuscular junctions (NMJs) were more fragmented in these animals in comparison with the wild-type mice. In BACHD mice, the synaptic vesicles of the diaphragm NMJs presented a decreased exocytosis rate. Quantal content and quantal size were smaller and there was less synaptic depression whereas the estimated size of the readily releasable vesicle pool was not changed. At the ultrastructure level, the diaphragm NMJs of these mice presented fewer synaptic vesicles with flattened and oval shapes, which might be associated with the reduced expression of the vesicular acetylcholine transporter protein. Furthermore, mitochondria of the diaphragm muscle presented signs of degeneration in BACHD mice. Interestingly, despite all these cellular alterations, BACHD diaphragmatic function was not compromised, suggesting a higher resistance threshold of this muscle. A putative resistance mechanism may be protecting this vital muscle. Our data contribute to expanding the current understanding of the effects of mutated huntingtin in the neuromuscular synapse and the diaphragm muscle function.


Subject(s)
Diaphragm/metabolism , Huntington Disease/metabolism , Synapses/metabolism , Synaptic Vesicles/metabolism , Animals , Diaphragm/pathology , Disease Models, Animal , Humans , Huntington Disease/pathology , Neuromuscular Junction/metabolism , Presynaptic Terminals/metabolism
12.
Biophys Rev ; 9(5): 847-856, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28889335

ABSTRACT

First-order somatosensory neurons transduce and convey information about the external or internal environment of the body to the central nervous system. They are pseudo unipolar neurons with cell bodies residing in one of several ganglia located near the central nervous system, with the short branch of the axon connecting to the spinal cord or the brain stem and the long branch extending towards the peripheral organ they innervate. Besides their sensory transducer and conductive role, somatosensory neurons also have trophic functions in the tissue they innervate and participate in local reflexes in the periphery. The cell bodies of these neurons are remarkably diverse in terms of size, molecular constitution, and electrophysiological properties. These parameters have provided criteria for classification that have proved useful to establish and study their functions. In this review, we discuss ways to measure and classify populations of neurons based on their size and action potential firing pattern. We also discuss attempts to relate the different populations to specific sensory modalities.

13.
Biophys Rev ; 9(5): 835-845, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28836161

ABSTRACT

Metabotropic glutamate (mGlu) receptors couple through G proteins to regulate a large number of cell functions. Eight mGlu receptor isoforms have been cloned and classified into three Groups based on sequence, signal transduction mechanisms and pharmacology. This review will focus on Group I mGlu receptors, comprising the isoforms mGlu1 and mGlu5. Activation of these receptors initiates both G protein-dependent and -independent signal transduction pathways. The G-protein-dependent pathway involves mainly Gαq, which can activate PLCß, leading initially to the formation of IP3 and diacylglycerol. IP3 can release Ca2+ from cellular stores resulting in activation of Ca2+-dependent ion channels. Intracellular Ca2+, together with diacylglycerol, activates PKC, which has many protein targets, including ion channels. Thus, activation of the G-protein-dependent pathway affects cellular excitability though several different effectors. In parallel, G protein-independent pathways lead to activation of non-selective cationic currents and metabotropic synaptic currents and potentials. Here, we provide a survey of the membrane transport proteins responsible for these electrical effects of Group I metabotropic glutamate receptors.

14.
Cell Mol Neurobiol ; 37(3): 453-460, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27140189

ABSTRACT

Thiamine (vitamin B1) is co-factor for three pivotal enzymes for glycolytic metabolism: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and transketolase. Thiamine deficiency leads to neurodegeneration of several brain regions, especially the cerebellum. In addition, several neurodegenerative diseases are associated with impairments of glycolytic metabolism, including Alzheimer's disease. Therefore, understanding the link between dysfunction of the glycolytic pathway and neuronal death will be an important step to comprehend the mechanism and progression of neuronal degeneration as well as the development of new treatment for neurodegenerative states. Here, using an in vitro model to study the effects of thiamine deficiency on cerebellum granule neurons, we show an increase in Ca2+ current density and CaV1.2 expression. These results indicate a link between alterations in glycolytic metabolism and changes to Ca2+ dynamics, two factors that have been implicated in neurodegeneration.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Cerebellum/pathology , Ion Channel Gating , Neurons/metabolism , Thiamine Deficiency/metabolism , Animals , Animals, Newborn , Immunoblotting , Rats, Wistar , Refractory Period, Electrophysiological , Thiamine Deficiency/physiopathology
15.
Toxicon ; 112: 16-21, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26802625

ABSTRACT

Spider toxins are recognized as useful sources of bioactive substances, showing a wide range of pharmacological effects on neurotransmission. Several spider toxins have been identified biochemically and some of them are specific glutamate receptors antagonists. Previous data indicate that PnTx4-5-5, a toxin isolated from the spider Phoneutria nigriventer, inhibits the N-methyl-d-aspartate receptor (NMDAR), with little or no effect on AMPA, kainate or GABA receptors. In agreement with these results, our findings in this study show that PnTx4-5-5 reduces the amplitude of NMDAR-mediated EPSCs in hippocampal slices. It is well established that glutamate-mediated excitotoxic neuronal cell death occurs mainly via NMDAR activation. Thus, we decided to investigate whether PnTx4-5-5 would protect against various cell death insults. For that, we used primary-cultured corticostriatal neurons from wild type (WT) mice, as well as from a mouse model of Huntington's disease, BACHD. Our results showed that PnTx4-5-5 promotes neuroprotection of WT and BACHD neurons under the insult of high levels of glutamate. Moreover, the toxin is also able to protect WT neurons against amyloid ß (Aß) peptide toxicity. These results indicate that the toxin PnTx4-5-5 is a potential neuroprotective drug.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Arthropod Proteins/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Neurons/drug effects , Neuroprotective Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Spider Venoms/pharmacology , Amyloid beta-Peptides/toxicity , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Cell Death/drug effects , Cells, Cultured , Corpus Striatum/cytology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Embryo, Mammalian/cytology , Embryo, Mammalian/pathology , Huntington Disease/drug therapy , Huntington Disease/metabolism , Huntington Disease/pathology , In Vitro Techniques , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Patch-Clamp Techniques , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism
16.
Muscle Nerve ; 52(4): 623-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25600698

ABSTRACT

INTRODUCTION: Short-term plasticity of synaptic function is an important physiological control of transmitter release. Short-term plasticity can be regulated by intracellular calcium released by ryanodine and inositol triphosphate (IP3) receptors, but the role of these receptors at the neuromuscular junction is understood incompletely. METHODS: We measured short-term plasticity of evoked endplate potential (EPP) amplitudes from frog neuromuscular junctions treated with ryanodine, 2-aminoethoxydiphenylborane (2-APB), or 1-[6-[[(17ß)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U- 73122). RESULTS: Ryanodine decreases paired-pulse facilitation for intervals <20 ms and markedly decreases tetanic depression. Treatment with 2-APB reduces EPP amplitude, increases paired-pulse facilitation for intervals of <20 ms, and significantly reduces tetanic depression. U-73122 decreases EPP amplitude and decreases paired-pulse depression for intervals <20 ms. CONCLUSIONS: Ryanodine, IP3 receptors, and phospholipase C modulate short-term plasticity of transmitter release at the neuromuscular junction. These results suggest possible targets for improving the safety factor of neuromuscular transmission during repetitive activity of the neuromuscular junction.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors/metabolism , Neuromuscular Junction/metabolism , Neuronal Plasticity/physiology , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Anura , Biophysics , Boron Compounds/pharmacology , Calcium/metabolism , Dose-Response Relationship, Drug , Electric Stimulation , Electrophysiology , Estrenes/pharmacology , In Vitro Techniques , Neuromuscular Junction/drug effects , Neuronal Plasticity/drug effects , Phosphodiesterase Inhibitors/pharmacology , Pyrrolidinones/pharmacology , Ryanodine/pharmacology
17.
Eur J Neurosci ; 38(7): 2978-87, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23841903

ABSTRACT

We investigated the effects of cholesterol removal on spontaneous and KCl-evoked synaptic vesicle recycling at the frog neuromuscular junction. Cholesterol removal by methyl-ß-cyclodextrin (MßCD) induced an increase in the frequency of miniature end-plate potentials (MEPPs) and spontaneous destaining of synaptic vesicles labeled with the styryl dye FM1-43. Treatment with MßCD also increased the size of MEPPs without causing significant changes in nicotinic receptor clustering. At the ultrastructural level, synaptic vesicles from nerve terminals treated with MßCD were larger than those from control. In addition, treatment with MßCD reduced the fusion of synaptic vesicles that are mobilized during KCl-evoked stimulation, but induced recycling of those vesicles that fuse spontaneously. We therefore suggest that MßCD might favor the release of vesicles that belong to a pool that is different from that involved in the KCl-evoked release. These results reveal fundamental differences in the synaptic vesicle cycle for spontaneous and evoked release, and suggest that deregulation of cholesterol affects synaptic vesicle biogenesis and increases transmitter packing.


Subject(s)
Cell Membrane/physiology , Cholesterol/metabolism , Neuromuscular Junction/physiology , Synaptic Vesicles/physiology , Animals , Cell Membrane/drug effects , Exocytosis/drug effects , Exocytosis/physiology , Microelectrodes , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Miniature Postsynaptic Potentials/drug effects , Miniature Postsynaptic Potentials/physiology , Neuromuscular Agents/pharmacology , Neuromuscular Junction/drug effects , Neuromuscular Junction/ultrastructure , Potassium Chloride/pharmacology , Pyridinium Compounds , Quaternary Ammonium Compounds , Rana catesbeiana , Receptors, Nicotinic/metabolism , Synaptic Vesicles/drug effects , Synaptic Vesicles/ultrastructure , Tissue Culture Techniques , beta-Cyclodextrins/pharmacology
18.
Neuropharmacology ; 71: 237-46, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23597507

ABSTRACT

Phα1ß toxin is a peptide purified from the venom of the armed spider Phoneutria nigriventer, with markedly antinociceptive action in models of acute and persistent pain in rats. Similarly to ziconotide, its analgesic action is related to inhibition of high voltage activated calcium channels with more selectivity for N-type. In this study we evaluated the effect of Phα1ß when injected peripherally or intrathecally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of Phα1ß on Ca²âº transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor. Intraplantar or intrathecal administered Phα1ß reduced both nocifensive behavior and mechanical hypersensitivity induced by capsaicin similarly to that observed with SB366791, a specific TRPV1 antagonist. Peripheral nifedipine and mibefradil did also decrease nociceptive behavior induced by intraplantar capsaicin. In contrast, ω-conotoxin MVIIA (a selective N-type Ca²âº channel blocker) was effective only when administered intrathecally. Phα1ß, MVIIA and SB366791 inhibited, with similar potency, the capsaicin-induced Ca²âº transients in DRG neurons. The simultaneous administration of Phα1ß and SB366791 inhibited the capsaicin-induced Ca²âº transients that were additive suggesting that they act through different targets. Moreover, Phα1ß did not inhibit capsaicin-activated currents in patch-clamp recordings of HEK293 cells that expressed TRPV1 receptors. Our results show that Phα1ß may be effective as a therapeutic strategy for pain and this effect is not related to the inhibition of TRPV1 receptors.


Subject(s)
Analgesics, Non-Narcotic/therapeutic use , Disease Models, Animal , Ganglia, Spinal/drug effects , Membrane Transport Modulators/therapeutic use , Neuralgia/drug therapy , Neurons/drug effects , Spider Venoms/therapeutic use , Analgesics, Non-Narcotic/pharmacology , Animals , Behavior, Animal/drug effects , Calcium Signaling/drug effects , Capsaicin , Cells, Cultured , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , HEK293 Cells , Humans , Insect Proteins/pharmacology , Insect Proteins/therapeutic use , Male , Membrane Transport Modulators/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Neuralgia/pathology , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Peptides/pharmacology , Peptides/therapeutic use , Rats , Rats, Wistar , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spider Venoms/pharmacology , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
19.
Toxicon ; 57(2): 217-24, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21115025

ABSTRACT

In this study, we evaluated the effects of PhKv, a 4584 Da peptide isolated from the spider Phoneutria nigriventer venom, in the isolated rat heart and in isolated ventricular myocytes. Ventricular arrhythmias were induced by occlusion of the left anterior descending coronary artery for 15 min followed by 30 min of reperfusion. Administration of native PhKv (240 nM) 1 min before or after reperfusion markedly reduced the duration of arrhythmias. This effect was blocked by atropine, thereby indicating the participation of muscarinic receptors in the antiarrhythmogenic effect of PhKv. Notably, recombinant PhKv (240 nM) was also efficient to attenuate the arrhythmias (3.8 ± 0.9 vs. 8.0 ± 1.2 arbitrary units in control group). Furthermore, PhKv induced a significant reduction in heart rate. This bradycardia was partially blunted by atropine and potentiated by pyridostigmine. To further evaluate the participation of acetylcholine on the PhKv effects, we examined the release of this neurotransmitter from neuromuscular junctions. It was found that Phkv (200 nM) significantly increased the release of acetylcholine in this preparation. Moreover, PhKv (250 nM) did not cause any significant change in action potential or Ca(2+) transient parameters in isolated cardiomyocytes. Altogether, these findings show an important acetylcholine-mediated antiarrhythmogenic effect of the spider PhKv toxin in isolated hearts.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Heart/drug effects , Neurotoxins/pharmacology , Spider Venoms/chemistry , Spiders/chemistry , Acetylcholine/metabolism , Acetylcholine/physiology , Action Potentials/drug effects , Animals , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/isolation & purification , Atropine/pharmacology , Calcium Signaling/drug effects , Cloning, Molecular , Electrophysiology , In Vitro Techniques , Male , Myocytes, Cardiac/drug effects , Neuromuscular Junction/drug effects , Neuromuscular Junction/metabolism , Neurotoxins/chemistry , Neurotoxins/genetics , Pyridostigmine Bromide/pharmacology , Rats , Rats, Wistar
20.
Neurotox Res ; 19(1): 102-14, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20020338

ABSTRACT

We examined modification of sodium channel gating by Tityus bahiensis scorpion venom (TbScV), and compared effects on native tetrodotoxin-sensitive and tetrodotoxin-resistant sodium currents from rat dorsal root ganglion neurons and cardiac myocytes. In neurons, TbScV dramatically reduced the rate of sodium current inactivation, increased current amplitude, and caused a negative shift in the voltage-dependence of activation and inactivation of tetrodotoxin-sensitive channels. Enhanced activation of modified sodium channels was independent of a depolarizing prepulse. We identified two components of neuronal tetrodotoxin-resistant current with biophysical properties similar to those described for NaV1.8 and NaV1.9. In contrast to its effects on neuronal tetrodotoxin-sensitive current, TbScV caused a small decrease in neuronal tetrodotoxin-resistant sodium current amplitude and the gating modifications described above were absent. A third tetrodotoxin-resistant current, NaV1.5 recorded in rat cardiac ventricular myocytes, was inhibited approximately 50% by TbScV, and the remaining current exhibited markedly slowed activation and inactivation. In conclusion, TbScV has very different effects on different sodium channel isoforms. Among the neuronal types, currents resistant to tetrodotoxin are also resistant to gating modification by TbScV. The cardiac tetrodotoxin-resistant current has complex sensitivity that includes both inhibition of current amplitude and slowing of activation and inactivation.


Subject(s)
Scorpion Venoms/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Tetrodotoxin/pharmacology , Animals , Cells, Cultured , Drug Resistance , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Male , NAV1.5 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel , NAV1.9 Voltage-Gated Sodium Channel , Rats , Rats, Wistar , Sodium Channel Agonists , Sodium Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL