Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(28): 7302-7311, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38984794

ABSTRACT

Advancements in Li-ion battery (LIB) technology hinge on an understanding of Li-ion solvation and charge transport dynamics. Ultrafast two-dimensional infrared (2D-IR) spectroscopy has been used to investigate these dynamics in electrolytes by probing chemical exchange processes through time-dependent cross-peak analysis. However, accurate interpretation is complicated by factors such as vibrational energy transfer and molecular photothermal effect (MPTE), affecting cross-peak evolution. Pinpointing the precise origin of these cross-peaks has posed a significant challenge in time-resolved IR spectroscopic studies of LIB electrolytes. Here, we trace the origin of 2D-IR cross-peaks of LIB electrolytes utilizing acetonitrile as a solvent. Time-dependent analysis of LiSCN and CH3SCN mixtures in CD3CN revealed distinctive MPTE features. Furthermore, direct observation of intermolecular MPTE through two-color IR pump-probe spectroscopy lends support to the findings. Our results emphasize the non-negligible artifacts induced by MPTE and the necessity of considering these effects to accurately observe the ultrafast dynamics within LIB electrolytes.

2.
Macromol Rapid Commun ; : e2400299, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850109

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films have emerged as potential alternatives to indium-tin oxide as transparent electrodes in optoelectronic devices because of their superior transparency, flexibility, and chemical doping stability. However, pristine PEDOT:PSS films show low conductivities because the insulating PSS-rich domains isolate the conductive PEDOT-rich domains. In this study, the conductivities and corresponding spatially resolved Raman properties of PEDOT:PSS thin films treated with various concentrations of H2SO4 are presented. After the PEDOT:PSS films are treated with the H2SO4 solutions, their electrical conductivities are significantly improved from 0.5 (nontreated) to 4358 S cm-1 (100% v/v). Raman heat maps of the peak shifts and widths of the Cα═Cß stretching mode are constructed. A blueshift and width decrease of the Cα═Cß Raman mode in PEDOT are uniformly observed in the entire measurement area (20 × 20 µm2), indicating that microstructural transitions are successfully accomplished across the area from the coiled to linear conformation and high crystallinity upon H2SO4 treatment. Thus, it is proved that comprehensive Raman map analysis can be easily utilized to clarify microstructural properties distributed in large areas induced by various dopants. These results also offer valuable insights for evaluating and optimizing the performance of other conductive thin films.

3.
ChemSusChem ; : e202400636, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828662

ABSTRACT

The stability of high-energy-density lithium metal batteries (LMBs) heavily relies on the composition of the solid electrolyte interphase (SEI) formed on lithium metal anodes. In this study, the inorganic-rich SEI layer was achieved by incorporating bisalts additives into carbonate-based electrolytes. Within this SEI layer, the presence of LiF, polythionate, and Li3N was observed, generated by combining 1.0 м lithium bis(trifluoromethanesulfonyl)imide in ethylene carbonate: ethyl methyl carbonate:dimethyl carbonate in a 1 : 1 : 1 volume ratio, with the addition of 2 wt% lithium difluorophosphate and 2 wt% lithium difluoro(oxalato)borate additives (EL-DO). Furthermore, this formulation effectively mitigated corrosion of aluminum current collectors. EL-DO exhibited outstanding performance, including an average coulombic efficiency of 98.2 % in Li||Cu cells and a stable discharge capacity of approximately 162 mAh g-1 after 200 cycles in a Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) configuration. Moreover, EL-DO displayed the potential to enhance the performance not only of LMBs but also of lithium-ion batteries. In the case of Gr||NCM811 cell using EL-DO, it consistently maintained high discharge capacities, even achieving around 135 mAh g-1 after the 100th cycle, surpassing the performance of other electrolytes. This study underscores the synergistic impact of bisalts additives in elevating the performance of lithium batteries.

4.
Small ; : e2307951, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770978

ABSTRACT

Lithium-sulfur batteries (LSBs) are considered a highly promising next-generation energy storage technology due to their exceptional energy density and cost-effectiveness. However, the practical use of current LSBs is hindered primarily by issues related to the "shuttle effect" of lithium polysulfide (LiPS) intermediates and the growth of lithium dendrites. In strongly solvating electrolytes, the solvent-derived solid electrolyte interphase (SEI) lacks mechanical strength due to organic components, leading to ineffective lithium dendrite suppression and severe LiPS dissolution and shuttling. In contrast, the weakly solvating electrolyte (WSE) can create an anion-derived SEI layer which can enhance compatibility with lithium metal anode, and restricting LiPS solubility. Herein, a WSE consisting of 0.4 Ð¼ LiTFSI in the mixture of 1,4-dioxane (DX):dimethoxymethane (DMM) is designed to overcome the issues associated with LSB. Surface analyses confirmed the formation of a beneficial SEI layer rich in LiF, enabling homogeneous lithium deposition with an average Coulombic efficiency CE exceeding 99% over 100 cycles. Implementing the low-concentration WSE in Li||SPAN cells yielded an impressive initial specific capacity of 671 mAh g-1. This research highlights the advantages of WSE and offers the pathway for cost-effective electrolyte development, enabling the realization of high-performance LSBs.

5.
ACS Appl Mater Interfaces ; 16(8): 10033-10041, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38373218

ABSTRACT

Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles.

6.
Sci Total Environ ; 917: 170388, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280610

ABSTRACT

Road networks constitute a vital component of modern society, facilitating rapid transportation and driving economic activities by enabling the smooth movement of goods and people. However, the expansion of road systems carries significant environmental considerations, particularly regarding its impact on groundwater quality. Thus, it is crucial to understand the complex relationship between groundwater quality and the road traffic system. This paper aims to identify the impact of road transport systems on groundwater quality using a data-driven approach. Specifically, road network and groundwater chemistry data in Texas were obtained from an open data portal. This study was carried out in two phases: the explainable artificial intelligence (XAI) modeling phase and the multivariate analysis phase. In the XAI modeling phase, a prediction model was developed using eXtreme Gradient Boosting (XGB), with groundwater chemistry parameters as output features and road transport attributes as input features, i.e., elevation, annual average daily traffic, distance, lane-miles, speed limit and well depth. Furthermore, the relationships between groundwater chemistry parameters and road transport attributes were examined using feature importance and accumulated local effect (ALE). In the multivariate phase, Piper diagrams and principal component analysis (PCA) were utilized to identify the source of the selected groundwater chemistry parameters from the XAI models. The results of the prediction model showed that five groundwater chemistry parameters were significantly impacted by road transport systems with below a mean absolute percentage error of 0.20, including, pH, temperature, aluminum (Al), bicarbonate (HCO3-), and alkalinity. Additionally, XAI models were developed to understand the relationship between the road transport attributes on five selected parameters. The findings collectively indicated that the Texas groundwater qualities are greatly impacted by road transport systems within a distance of 50-meters and a well depth of 100-meters. This study provides a novel contribution to monitoring point sources of groundwater pollution using XAI techniques.

7.
J Phys Chem B ; 127(44): 9566-9574, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37905968

ABSTRACT

Understanding chemical exchange in carbonate-based electrolytes employed in Li-ion batteries (LIBs) is crucial for elucidating ion transport mechanisms. Ultrafast two-dimensional (2D) IR spectroscopy has been widely used to investigate the solvation structure and dynamics of Li-ions in organic carbonate-based electrolytes. However, the interpretation of cross-peaks observed in picosecond carbonyl stretch 2D-IR spectra has remained contentious. These cross-peaks could arise from various phenomena, including vibrational couplings between neighboring carbonyl groups in the first solvation shell around Li-ions, vibrational excitation transfers between carbonyl groups in distinct solvation environments, and local heating effects. Therefore, it is imperative to resolve the interpretation of 2D-IR cross-peaks to avoid misinterpretations regarding ultrafast dynamics found in LIB carbonate-based electrolytes. In this study, we have taken a comprehensive investigation of carbonate-based electrolytes utilizing 2D-IR spectroscopy and molecular dynamics (MD) simulations. Through meticulous analyses and interpretations, we have identified that the cross-peaks observed in the picosecond 2D-IR spectra of LIB electrolytes predominantly arise from intermolecular vibrational excitation transfer processes between the carbonyl groups of Li-bound and free carbonate molecules. We further discuss the limitations of employing a picosecond 2D-IR spectroscopic technique to study chemical exchange and intermolecular vibrational excitation transfer processes, particularly when the effects of the molecular photothermal process cannot be ignored. Our findings shed light on the dynamics of LIB electrolytes and resolve the controversy related to 2D-IR cross-peaks. By discerning the origin of these features, we could provide valuable insights for the design and optimization of next-generation Li-ion batteries.

8.
ACS Appl Mater Interfaces ; 15(34): 41170-41179, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37561063

ABSTRACT

Area-selective atomic layer deposition (AS-ALD) of insulating metallic oxide layers could be a useful nanopatterning technique for making increasingly complex semiconductor circuits. Although the alkanethiol self-assembled monolayer (SAM) has been considered promising as an ALD inhibitor, the low inhibition efficiency of the SAM during ALD processes makes its wide application difficult. We investigated the deposition mechanism of Al2O3 on alkanethiol-SAMs using temperature-dependent vibrational sum-frequency-generation spectroscopy. We found that the thermally induced formation of gauche defects in the SAMs is the main causative factor deteriorating the inhibition efficiency. Here, we demonstrate that a discontinuously temperature-controlled ALD technique involving self-healing and dissipation of thermally induced stress on the structure of SAM substantially enhances the SAM's inhibition efficiency and enables us to achieve 60 ALD cycles (6.6 nm). We anticipate that the present experimental results on the ALD mechanism on the SAM surface and the proposed ALD method will provide clues to improve the efficiency of AS-ALD, a promising nanoscale patterning and manufacturing technique.

9.
Polymers (Basel) ; 15(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36987135

ABSTRACT

Organic solar cells (OSCs) demonstrating high power conversion efficiencies have been mostly fabricated using halogenated solvents, which are highly toxic and harmful to humans and the environment. Recently, non-halogenated solvents have emerged as a potential alternative. However, there has been limited success in attaining an optimal morphology when non-halogenated solvents (typically o-xylene (XY)) were used. To address this issue, we studied the dependence of the photovoltaic properties of all-polymer solar cells (APSCs) on various high-boiling-point non-halogenated additives. We synthesized PTB7-Th and PNDI2HD-T polymers that are soluble in XY and fabricated PTB7-Th:PNDI2HD-T-based APSCs using XY with five additives: 1,2,4-trimethylbenzene (TMB), indane (IN), tetralin (TN), diphenyl ether (DPE), and dibenzyl ether (DBE). The photovoltaic performance was determined in the following order: XY + IN < XY + TMB < XY + DBE ≤ XY only < XY + DPE < XY + TN. Interestingly, all APSCs processed with an XY solvent system had better photovoltaic properties than APSCs processed with chloroform solution containing 1,8-diiodooctane (CF + DIO). The key reasons for these differences were unraveled using transient photovoltage and two-dimensional grazing incidence X-ray diffraction experiments. The charge lifetimes of APSCs based on XY + TN and XY + DPE were the longest, and their long lifetime was strongly associated with the polymer blend film morphology; the polymer domain sizes were in the nanoscale range, and the blend film surfaces were smoother, as the PTB7-Th polymer domains assumed an untangled, evenly distributed, and internetworked morphology. Our results demonstrate that the use of an additive with an optimal boiling point facilitates the development of polymer blends with a favorable morphology and can contribute to the widespread use of eco-friendly APSCs.

10.
Phys Chem Chem Phys ; 25(13): 9051-9060, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36843414

ABSTRACT

Liquid-liquid phase separation (LLPS) plays a significant role in various biological processes, including the formation of membraneless organelles and pathological protein aggregation. Although many studies have found various factors that modulate the LLPS process or the liquid-to-solid phase transition (LSPT) using microscopy or fluorescence-based methods, the molecular mechanistic details underlying LLPS and protein aggregation within liquid droplets remain uncharacterized. Therefore, structural information on proteins inside liquid droplets is required to understand the mechanistic link to amyloid formation. In the present study, we monitored droplet formation related to protein fibrillation using micro-Raman spectroscopy in combination with differential interference contrast (DIC) microscopy to study the conformational change in proteins and the hydrogen-bonding (H-bonding) structure of water during LLPS. Interestingly, we found that the O-D stretching band for water (HOD in H2O) inside the droplets exhibited a distinct Raman spectrum from that of the bulk water, suggesting that the time-dependent change in the hydration environment in the protein droplets during the process of LLPS can be studied. These results demonstrate that the superior spatial resolution of micro-Raman spectroscopy offers significant advantages in investigating the molecular mechanisms of LLPS and following LSPT processes.


Subject(s)
Amyloid , Spectrum Analysis, Raman , Amyloid/chemistry
11.
Chemistry ; 29(15): e202203536, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36548089

ABSTRACT

This study examines thermoresponse of odd-even effect in self-assembled monolayers (SAMs) of n-alkanethiolates (SCn , n=3-18) formed on template-stripped gold (AuTS ) using macro- and microscopic analytical techniques, contact angle goniometry (CAG) and vibrational sum frequency generation (VSFG) spectroscopy, respectively. Both CAG and VSFG analyses showed that the odd-even effect in liquid-like SAMs (n=3-9) disappeared upon heating at 50-70 °C, indicating that the heating led to increased structural disorder regardless of odd and even carbon numbers. In contrast, the opposite thermoresponse was observed for odd and even SCn molecules in wax- and solid-like SAMs (n=10-18). Namely, temperature-dependent orientational change of terminal CH3 relative to the surface normal was opposite for the odd and even molecules, thereby leading to mitigated odd-even effect. Our work offers important insights into thermoresponse of supramolecular structure in condensed organic matter.

12.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362033

ABSTRACT

The spectral range of femtosecond time-resolved infrared spectroscopy is limited by the bandwidth of mid-IR pulses (100~400 cm-1) generated from the combination of Ti:Sapphire amplifier, Optical Parametric Amplifier (OPA), and Difference Frequency Generation (DFG). To overcome this limitation, we implement a compact continuum mid-IR source producing ultrafast pulses that span the frequency range from 1000 to 4200 cm-1 (from 10 to 2.4 µm), which utilize the mixing of fundamental, second-harmonic, and third-harmonic of 800 nm pulse in the air. After building an IR spectrometer with continuum IR and a monochromator, we found that the distortion of the measured IR spectrum originated from the contamination of higher-order diffraction. We used bandpass filters to eliminate the higher-order contributions and correct the measured IR spectrum. We further characterized the spectral properties of fundamental, second-harmonic, and third-harmonic fields after the plasmonic filamentation process, which helps to improve the efficiency of the continuum IR generation. Using the generated continuum IR pulses, we measured the IR absorption spectrum of a water-benzonitrile mixture, which was found to be consistent with the spectrum obtained with a commercial FT-IR spectrometer. The present work will be useful for the efficient generation of continuum IR pulses for IR pump-probe and two-dimensional IR spectroscopy experiments in the future.


Subject(s)
Water , Spectroscopy, Fourier Transform Infrared , Spectrophotometry, Infrared/methods
13.
Chemosphere ; 308(Pt 2): 136289, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36058378

ABSTRACT

Elevated dissolved arsenic (As) concentrations in the shallow aquifers of Bangladesh are primarily caused by microbially-mediated reduction of As-bearing iron (Fe) (oxy)hydroxides in organic matter (OM) rich, reducing environments. Along the Meghna River in Bangladesh, interactions between the river and groundwater within the hyporheic zone cause fluctuating redox conditions responsible for the formation of a Fe-rich natural reactive barrier (NRB) capable of sequestering As. To understand the NRB's impact on As mobility, the geochemistry of riverbank sediment (<3 m depth) and the underlying aquifer sediment (up to 37 m depth) was analyzed. A 24-hr sediment-water extraction experiment was performed to simulate interactions of these sediments with oxic river water. The sediment and the sediment-water extracts were analyzed for inorganic and organic chemical parameters. Results revealed no differences between the elemental composition of riverbank and aquifer sediments, which contained 40 ± 12 g/kg of Fe and 7 ± 2 mg/kg of As, respectively. Yet the amounts of inorganic and organic constituents extracted were substantially different between riverbank and aquifer sediments. The water extracted 6.4 ± 16.1 mg/kg of Fe and 0.03 ± 0.02 mg/kg of As from riverbank sediments, compared to 154.0 ± 98.1 mg/kg of Fe and 0.55 ± 0.40 mg/kg of As from aquifer sediments. The riverbank and aquifer sands contained similar amounts of sedimentary organic matter (SOM) (17,705.2 ± 5157.6 mg/kg). However, the water-extractable fraction of SOM varied substantially, i.e., 67.4 ± 72.3 mg/kg in riverbank sands, and 1330.3 ± 226.6 mg/kg in aquifer sands. Detailed characterization showed that the riverbank SOM was protein-like, fresh, low molecular weight, and labile, whereas SOM in aquifer sands was humic-like, older, high molecular weight, and recalcitrant. During the dry season, oxic conditions in the riverbank may promote aerobic metabolisms, limiting As mobility within the NRB.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Bangladesh , Environmental Monitoring/methods , Geologic Sediments/chemistry , Groundwater/chemistry , Iron/analysis , Organic Chemicals , Rivers , Sand , Water , Water Pollutants, Chemical/analysis
14.
J Phys Chem Lett ; 13(33): 7881-7888, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35979999

ABSTRACT

Lithium-ion batteries face insufficient capacity at low temperatures. The lithium-ion desolvation process in the vicinity of a solid electrolyte interphase (SEI) layer is considered the major problem. Thus, an accurate determination of lithium-ion solvation structures is a prerequisite for understanding this process. Here, using a cryostat combined with an FTIR spectrometer, we found that as the temperature decreased, the number of coordinating carbonates in the first solvation shell of the lithium ion increased with a decreased population of the contact ion pair (CIP). More specifically, we found that two or more carbonate molecules replace a single PF6- anion upon CIP dissociation. This experimental finding shows that the prevailing notion that four carbonate molecules coordinate each lithium ion to form a tetrahedral structure is invalid for describing lithium-ion solvation structures. We anticipate that the present work will elucidate one of the molecular origins behind the low performance of lithium-ion batteries at low temperatures.

15.
Adv Mater ; 34(43): e2205504, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35985813

ABSTRACT

Electroluminescence from quantum dots (QDs) is a suitable photon source for futuristic displays offering hyper-realistic images with free-form factors. Accordingly, a nondestructive and scalable process capable of rendering multicolored QD patterns on a scale of several micrometers needs to be established. Here, nondestructive direct photopatterning for heavy-metal-free QDs is reported using branched light-driven ligand crosslinkers (LiXers) containing multiple azide units. The branched LiXers effectively interlock QD films via photo-crosslinking native aliphatic QD surface ligands without compromising the intrinsic optoelectronic properties of QDs. Using branched LiXers with six sterically engineered azide units, RGB QD patterns are achieved on the micrometer scale. The photo-crosslinking process does not affect the photoluminescence and electroluminescence characteristics of QDs and extends the device lifetime. This nondestructive method can be readily adapted to industrial processes and make an immediate impact on display technologies, as it uses widely available photolithography facilities and high-quality heavy-metal-free QDs with aliphatic ligands.

16.
Chem Sci ; 13(16): 4482-4489, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35656138

ABSTRACT

Amyloid proteins that undergo self-assembly to form insoluble fibrillar aggregates have attracted much attention due to their role in biological and pathological significance in amyloidosis. This study aims to understand the amyloid aggregation dynamics of insulin (INS) in H2O using two-dimensional infrared (2D-IR) spectroscopy. Conventional IR studies have been performed in D2O to avoid spectral congestion despite distinct H-D isotope effects. We observed a slowdown of the INS fibrillation process in D2O compared to that in H2O. The 2D-IR results reveal that different quaternary structures of INS at the onset of the nucleation phase caused the distinct fibrillation pathways of INS in H2O and D2O. A few different biophysical analysis, including solution-phase small-angle X-ray scattering combined with molecular dynamics simulations and other spectroscopic techniques, support our 2D-IR investigation results, providing insight into mechanistic details of distinct structural transition dynamics of INS in water. We found the delayed structural transition in D2O is due to the kinetic isotope effect at an early stage of fibrillation of INS in D2O, i.e., enhanced dimer formation of INS in D2O. Our 2D-IR and biophysical analysis provide insight into mechanistic details of structural transition dynamics of INS in water. This study demonstrates an innovative 2D-IR approach for studying protein dynamics in H2O, which will open the way for observing protein dynamics under biological conditions without IR spectroscopic interference by water vibrations.

17.
J Phys Chem Lett ; 12(38): 9275-9282, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34534434

ABSTRACT

The role of water in the excellent biocompatibility of the acrylate-based polymers widely used for antibiofouling coating material has been realized previously. Here, we report femtosecond mid-infrared pump-probe spectroscopy of the OD stretch band of HOD molecule adsorbed on highly biocompatible poly(2-methoxyethyl) acrylate [PMEA] and poorly biocompatible poly(2-phenoxyethyl) acrylate [PPEA], both of which reveal that there are two water species with significantly different vibrational lifetime. PMEA interacts more strongly with water than PPEA through the H-bonding interaction between carbonyl (C═O) and water. The vibrational lifetime of the OD stretch in PPEA is notably longer by factors of 3 and 7 than those in PMEA and bulk water, respectively. The IR-pump visible-probe photothermal imaging further unravels substantial spatial overlap between polymer CO group and water for hydrated PMEA and a significant difference in surface morphology than those in PPEA, which exhibits the underlying relationships among polymer-water interaction, surface morphology, and biocompatibility.


Subject(s)
Acrylates/chemistry , Biocompatible Materials/chemistry , Polymers/chemistry , Water/chemistry , Adsorption , Molecular Dynamics Simulation , Spectroscopy, Fourier Transform Infrared , Surface Properties
18.
Anal Chem ; 93(37): 12594-12601, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34491717

ABSTRACT

Organic carbonate electrolytes are widely used materials for lithium-ion batteries. However, detailed solvation structures and solvent coordination numbers (CNs) of lithium cations in such solutions have not been accurately described nor determined yet. Because transmission-type IR spectroscopy is not of use for measuring the carbonyl stretch modes of electrolytes due to their absorption saturation problem, we here show that simple spacer-free thin cell IR spectroscopy can provide quantitative information on the number of solvating carbonate molecules around each lithium ion. We could estimate the solvent (carbonate) CNs of lithium ions in dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, propylene carbonate, and butylene carbonate over a wide range of lithium salt concentrations accurately, and they are compared with the previous results obtained with attenuated total reflection IR spectroscopy technique. We anticipate that our spacer-free thin cell approach will potentially be used to investigate the solvation dynamics, chemical exchange process, and vibrational energy transfers between solvating carbonate molecules in lithium salt electrolytes when combined with time-resolved IR spectroscopy.


Subject(s)
Electrolytes , Lithium , Carbonates , Solvents , Spectroscopy, Fourier Transform Infrared
19.
Chem Asian J ; 16(18): 2626-2632, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34288497

ABSTRACT

Developing ideal IR probes is essential to understand the structure and dynamics of biomolecules with time-resolved IR spectroscopies and imaging techniques. Especially, nitrile (CN) group has recently been proposed to serve as IR probes of the local environment of proteins. Herein, we investigated the effect of a substituent on the vibrational properties of the benzonitrile. The electron-donating and withdrawing character of p-substituent on benzonitrile are expected to modulate the vibrational frequency, molar extinction coefficient, and vibrational lifetime of CN probe. FT-IR revealed the positive correlation between electron-donating character and the molar extinction coefficient of CN stretch mode. Infrared pump-probe (IR-PP) measurements showed that the vibrational lifetime of CN stretch mode exhibits a relatively weak correlation with the electron-donating strength. Among the investigated samples, 4-dimethylamino benzonitrile with the strongest electron-donating strength shows enhanced absorption and extended vibrational lifetime. Utilizing substituent effects will be a practical strategy to improve the performance of the IR probe.

20.
Anal Chem ; 93(4): 2106-2113, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33389991

ABSTRACT

In operando observation of reaction intermediates is crucial for unraveling reaction mechanisms. To address the sensitivity limitations of commercial ReactIR, a flow cell was integrated with a Fourier transform infrared (FTIR) spectrometer yielding a "flow FTIR" device coupled with an NMR spectrometer for the elucidation of reaction mechanisms. The former device detects the low-intensity IR peaks of reaction intermediates by adjusting the path length of the FTIR sample cell, whereas the flow NMR allows the quantitative analysis of reaction species, thus offsetting the limitations of IR spectroscopy resulting from different absorption coefficients of the normal modes. Using the flow NMR and FTIR device, the controversial mechanism of benzoxazole synthesis was conclusively determined by spectroscopic evaluation of the reaction intermediates. This system enabled the accurate acquisition of previously elusive kinetic data, such as the reaction time and rate-determining step. The implementation of reaction flow cells into NMR and FTIR systems could be widely applied to study various reaction mechanisms, including dangerous and harsh reactions, thus avoiding contact with potentially harmful reaction intermediates.

SELECTION OF CITATIONS
SEARCH DETAIL