Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
J Mater Chem B ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082388

ABSTRACT

Photodynamic therapy (PDT) represents an emerging and noninvasive modality that has gained clinical approval for the treatment of cancers, leveraging photosensitizers for optimal therapeutic efficacy. In this study, we synthesized a photosensitizer (denoted as DTCSPP) exhibiting a donor-π-acceptor (D-π-A) structural motif. The DTCSPP manifests aggregation-induced emission (AIE) characteristics, along with good biocompatibility and mitochondrial targeting capabilities attributed to its intrinsic charge and D-π-A architecture. The excited-state intramolecular charge transfer of DTCSPP was systematically investigated in both solution and aggregate states using femtosecond transient absorption spectroscopy (fs-TA). The fs-TA results revealed that DTCSPP exhibited a more rapid and facile excited-state molecular motion in the solution state compared to the aggregate state, implying the predominance of nonradiative decay in its photophysical processes within the solution. Given its ability to simultaneously generate type I and type II reactive oxygen species and induce ferroptosis and autophagy in cancer cells, DTCSPP demonstrates effectiveness in PDT at both cellular and in vivo levels. This study contributes a comprehensive understanding of the excited-state intramolecular charge transfer dynamics of charged D-π-A type AIE photosensitizers, shedding light on their potential application in PDT. The multifaceted capabilities of DTCSPP underscore its promise in advancing the field of anticancer therapeutics, providing valuable insights for the identification of anticancer targets and the development of novel drugs.

2.
ACS Nano ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058791

ABSTRACT

Activity-based detection of γ-Glutamyltranspeptidase (GGT) using near-infrared (NIR) fluorescent probes is a promising strategy for early cancer diagnosis. Although NIR pyridinium probes show high performance in biochemical analysis, the aggregation of both the probes and parental fluorochromes in biological environments is prone to result in a low signal-to-noise ratio (SBR), thus affecting their clinical applications. Here, we develop a GGT-activatable aggregate probe called OTBP-G for two-photon fluorescence imaging in various biological environments under 1040 nm excitation. By rationally tunning the hydrophilicity and donor-acceptor strength, we enable a synergistic effect between twisted intramolecular charge transfer and intersystem crossing processes and realize a perfect dark state for OTBP-G before activation. After the enzymatic reaction, the parental fluorochrome exhibits bright aggregation-induced emission peaking at 670 nm. The fluorochrome-to-probe transformation can induce 1000-fold fluorescence ON/OFF ratio, realizing in vitro GGT detection with an SBR > 900. Activation of OTBP-G occurs within 1 min in vivo, showing an SBR > 400 in mouse ear blood vessels. OTBP-G can further enable the early detection of pulmonary metastasis in breast cancer by topically spraying, outperforming the clinical standard hematoxylin and eosin staining. We anticipate that the in-depth study of OTBP-G can prompt the development of early cancer diagnosis and tumor-related physiological research. Moreover, this work highlights the crucial role of hydrophilicity and donor-acceptor strength in maximizing the ON/OFF ratio of the TICT probes and showcases the potential of OTBP as a versatile platform for activity-based sensing.

3.
Nanoscale ; 16(31): 14707-14715, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39037089

ABSTRACT

This minireview provides an overview of the recent advancements in the development of biomimetic Aggregation-Induced Emission (AIE) nanoparticles and their applications in disease diagnosis, phototherapy, and photoimmunotherapy. AIE nanoparticles can be engineered to enable efficient image-guided photodynamic and photothermal therapies, however, challenges related to immune defense and target specificity persist. To overcome these, coating biomimetic materials on the surface of AIE nanoparticles, which mimic the features and functions of native cells, have emerged as a promising solution. This minireview will highlight the synthesis strategies and discuss the biomedical application of biomimetic AIE nanoparticles.


Subject(s)
Biomimetic Materials , Nanoparticles , Phototherapy , Biomimetic Materials/chemistry , Biomimetic Materials/therapeutic use , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Animals
4.
J Am Chem Soc ; 146(27): 18350-18359, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38937461

ABSTRACT

The development of luminescent materials via mechanochemistry embodies a compelling yet intricate frontier within materials science. Herein, we delineate a methodology for the synthesis of brightly luminescent polymers, achieved by the mechanochemical coupling of aggregation-induced emission (AIE) prefluorophores with generic polymers. An array of AIE moieties tethered to the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical are synthesized as prefluorophores, which initially exhibit weak fluorescence due to intramolecular quenching. Remarkably, the mechanical coupling of these prefluorophores with macromolecular radicals, engendered through ball milling of generic polymers, leads to substantial augmentation of fluorescence within the resultant polymers. We meticulously evaluate the tunable emission of the AIE-modified polymers, encompassing an extensive spectrum from the visible to the near-infrared region. This study elucidates the potential of such materials in stimuli-responsive systems with a focus on information storage and encryption displays. By circumventing the complexity inherent to the conventional synthesis of luminescent polymers, this approach contributes a paradigm to the field of AIE-based polymers with implications for advanced technological applications.

5.
Angew Chem Int Ed Engl ; : e202408586, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853460

ABSTRACT

Understanding the properties of the precursor can provide deeper insight into the crystallization and nucleation mechanisms of perovskites, which is vital for the solution-process device performance. Herein, we conducted a detailed investigation into the photophysics properties of CsPbBr3 precursors in a broad concentration and various solvents. The precursor transformed from the solution state into the colloidal state and exhibited aggregation-induced emission character as the concentration increased. The aggregative luminescence from the precursors originates from the polybromide plumbous that is formed through the coordination of solvent molecules to the lead metal center. Two adducts with monodentate (PbBr2 ⋅ solvent) and bidentate (PbBr2 ⋅ 2solvent) ligands can be obtained, accompanied by emission with photoluminescence at 610 and 565 nm, respectively. Furthermore, the aggregative luminescence intensity and color could be regulated by changing the solvent and precursor ratio. Besides, we discussed the difference between the molecular aggregate in the organic system and the ionic aggregate in the inorganic system: the ionic aggregate is composed of solvated ions rather than individual molecules as in organic systems, which could possess properties that ions do not have. The fluorescence that is sensitive to Pb2+ coordination reported here could be applied to screen perovskite additives and judge the precursor aging.

6.
Bioact Mater ; 37: 299-312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38694765

ABSTRACT

Ultrahigh dose-rate (FLASH) radiotherapy is an emerging technology with excellent therapeutic effects and low biological toxicity. However, tumor recurrence largely impede the effectiveness of FLASH therapy. Overcoming tumor recurrence is crucial for practical FLASH applications. Here, we prepared an agarose-based thermosensitive hydrogel containing a mild photothermal agent (TPE-BBT) and a glutaminase inhibitor (CB-839). Within nanoparticles, TPE-BBT exhibits aggregation-induced emission peaked at 900 nm, while the unrestricted molecular motions endow TPE-BBT with a mild photothermy generation ability. The balanced photothermal effect and photoluminescence are ideal for phototheranostics. Upon 660-nm laser irradiation, the temperature-rising effect softens and hydrolyzes the hydrogel to release TPE-BBT and CB-839 into the tumor site for concurrent mild photothermal therapy and chemotherapy, jointly inhibiting homologous recombination repair of DNA. The enhanced FLASH radiotherapy efficiently kills the tumor tissue without recurrence and obvious systematic toxicity. This work deciphers the unrestricted molecular motions in bright organic fluorophores as a source of photothermy, and provides novel recurrence-resistant radiotherapy without adverse side effects.

7.
Small ; : e2401334, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804884

ABSTRACT

Lung cancer, a highly prevalent and lethal form of cancer, is often associated with oxidative stress. Photodynamic therapy (PDT) has emerged as a promising alternative therapeutic tool in cancer treatments, but its efficacy is closely correlated to the photosensitizers generating reactive oxygen species (ROS) and the antioxidant capacity of tumor cells. In particular, glutathione (GSH) can reduce the ROS and thus compromise PDT efficacy. In this study, a GSH-responsive near-infrared photosensitizer (TBPPN) based on aggregation-induced emission for real-time monitoring of GSH levels and enhanced PDT for lung cancer treatment is developed. The strategic design of TBPPN, consisting of a donor-acceptor structure and incorporation of dinitrobenzene, enables dual functionality by not only the fluorescence being activated by GSH but also depleting GSH to enhance the cytotoxic effect of PDT. TBPPN demonstrates synergistic PDT efficacy in vitro against A549 lung cancer cells by specifically targeting different cellular compartments and depleting intracellular GSH. In vivo studies further confirm that TBPPN can effectively inhibit tumor growth in a mouse model with lung cancer, highlighting its potential as an integrated agent for the diagnosis and treatment of lung cancer. This approach enhances the effectiveness of PDT for lung cancer and deserves further exploration of its potential for clinical application.

8.
Adv Healthc Mater ; : e2400362, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768110

ABSTRACT

The diminishing effectiveness of existing aminoglycoside antibiotics (AGs) compels scientists to seek new approaches to enhance the sensitivity of current AGs. Despite ongoing efforts, currently available approaches remain restricted. Herein, a novel strategy involving the rational construction of an aggregation-induced-emission luminogen (AIEgen) is introduced to significantly enhance Gram-positive bacteria's susceptibility to AGs. The application of this approach involves the simple addition of AIEgens to bacteria followed by a 5 min light irradiation. Under light exposure, AIEgens efficiently generate reactive oxygen species (ROS), elevating intrabacterial ROS levels to a nonlethal threshold. Post treatment, the bacteria swiftly enter a hypersensitive state, resulting in a 21.9-fold, 15.5-fold, or 7.2-fold increase in susceptibility to three AGs: kanamycin, gentamycin, and neomycin, respectively. Remarkably, this approach is specific to AGs, and the induced hypersensitivity displays unparalleled longevity and heritability. Further in vivo studies confirm a 7.0-fold enhanced bactericidal ability of AGs against Gram-positive bacteria through this novel approach. This research not only broadens the potential applications of AIEgens but also introduces a novel avenue to bolster the effectiveness of AGs in combating bacterial infections.

9.
Chem Soc Rev ; 53(11): 5366-5393, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38712843

ABSTRACT

Transition metal-containing materials with aggregation-induced emission (AIE) have brought new opportunities for the development of biological probes, optoelectronic materials, stimuli-responsive materials, sensors, and detectors. Coordination compounds containing the platinum metal have emerged as a promising option for constructing effective AIE platinum complexes. In this review, we classified AIE platinum complexes based on the number of ligands. We focused on the development and performance of AIE platinum complexes with different numbers of ligands and discussed the impact of platinum ion coordination and ligand structure variation on the optoelectronic properties. Furthermore, this review analyzes and summarizes the influence of molecular geometries, stacking models, and aggregation environments on the optoelectronic performance of these complexes. We provided a comprehensive overview of the AIE mechanisms exhibited by various AIE platinum complexes. Based on the unique properties of AIE platinum complexes with different numbers of ligands, we systematically summarized their applications in electronics, biological fields, etc. Finally, we illustrated the challenges and opportunities for future research on AIE platinum complexes, aiming at giving a comprehensive summary and outlook on the latest developments of functional AIE platinum complexes and also encouraging more researchers to contribute to this promising field.

10.
Nat Metab ; 6(3): 550-566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448615

ABSTRACT

The post-translational modification lysine succinylation is implicated in the regulation of various metabolic pathways. However, its biological relevance remains uncertain due to methodological difficulties in determining high-impact succinylation sites. Here, using stable isotope labelling and data-independent acquisition mass spectrometry, we quantified lysine succinylation stoichiometries in mouse livers. Despite the low overall stoichiometry of lysine succinylation, several high-stoichiometry sites were identified, especially upon deletion of the desuccinylase SIRT5. In particular, multiple high-stoichiometry lysine sites identified in argininosuccinate synthase (ASS1), a key enzyme in the urea cycle, are regulated by SIRT5. Mutation of the high-stoichiometry lysine in ASS1 to succinyl-mimetic glutamic acid significantly decreased its enzymatic activity. Metabolomics profiling confirms that SIRT5 deficiency decreases urea cycle activity in liver. Importantly, SIRT5 deficiency compromises ammonia tolerance, which can be reversed by the overexpression of wild-type, but not succinyl-mimetic, ASS1. Therefore, lysine succinylation is functionally important in ammonia metabolism.


Subject(s)
Lysine , Sirtuins , Mice , Animals , Lysine/chemistry , Lysine/metabolism , Ammonia , Sirtuins/metabolism , Mice, Knockout , Urea
11.
J Am Chem Soc ; 146(8): 5030-5044, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38359354

ABSTRACT

Aggregate is one of the most extensive existing modes of matters in the world. Besides the research objectives of inanimate systems in physical science, the entities in life science can be regarded as living aggregates, which are far from being thoroughly understood despite the great advances in molecular biology. Molecular biology follows the research philosophy of reductionism, which generally reduces the whole into parts to study. Although reductionism benefits the understanding of molecular behaviors, it encounters limitations when extending to the aggregate level. Holism is another epistemology comparable to reductionism, which studies objectives at the aggregate level, emphasizing the interactions and synergetic/antagonistic effects of a group of composed single entities in determining the characteristics of a whole. As a representative of holism, aggregation-induced emission (AIE) materials have made great achievements in the past two decades in both physical and life science. In particular, the unique properties of AIE materials endow them with in situ and real-time visual methods to investigate the inconsistency between microscopic molecules and macroscopic substances, offering researchers excellent toolkits to study living aggregates. The applications of AIE materials in life science are still in their infancy and worth expanding. In this Perspective, we summarize the research progress of AIE materials in unveiling some phenomena and processes of living systems, aiming to provide a general research approach from the viewpoint of holism. At last, insights into what we can do in the near future are also raised and discussed.


Subject(s)
Molecular Biology , Philosophy
12.
Gastroenterology ; 167(2): 343-356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38342194

ABSTRACT

BACKGROUND & AIMS: Apoptosis generates plenty of membrane-bound nanovesicles, the apoptotic vesicles (apoVs), which show promise for biomedical applications. The liver serves as a significant organ for apoptotic material removal. Whether and how the liver metabolizes apoptotic vesicular products and contributes to liver health and disease is unrecognized. METHODS: apoVs were labeled and traced after intravenous infusion. Apoptosis-deficient mice by Fas mutant (Fasmut) and Caspase-3 knockout (Casp3-/-) were used with apoV replenishment to evaluate the physiological apoV function. Combinations of morphologic, biochemical, cellular, and molecular assays were applied to assess the liver while hepatocyte analysis was performed. Partial hepatectomy and acetaminophen liver failure models were established to investigate liver regeneration and disease recovery. RESULTS: We discovered that the liver is a major metabolic organ of circulatory apoVs, in which apoVs undergo endocytosis by hepatocytes via a sugar recognition system. Moreover, apoVs play an indispensable role to counteract hepatocellular injury and liver impairment in apoptosis-deficient mice upon replenishment. Surprisingly, apoVs form a chimeric organelle complex with the hepatocyte Golgi apparatus through the soluble N-ethylmaleimide-sensitive factor attachment protein receptor machinery, which preserves Golgi integrity, promotes microtubule acetylation by regulating α-tubulin N-acetyltransferase 1, and consequently facilitates hepatocyte cytokinesis for liver recovery. The assembly of the apoV-Golgi complex is further revealed to contribute to liver homeostasis, regeneration, and protection against acute liver failure. CONCLUSIONS: These findings establish a previously unrecognized functional and mechanistic framework that apoptosis through vesicular metabolism safeguards liver homeostasis and regeneration, which holds promise for hepatic disease therapeutics.


Subject(s)
Apoptosis , Hepatocytes , Homeostasis , Liver Regeneration , Liver , Mice, Knockout , Animals , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Liver/pathology , Caspase 3/metabolism , Mice , Hepatectomy , Disease Models, Animal , fas Receptor/metabolism , fas Receptor/genetics , Golgi Apparatus/metabolism , Endocytosis , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Mice, Inbred C57BL , Acetaminophen , Male
13.
ACS Nano ; 18(3): 1907-1920, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38190607

ABSTRACT

Bacterial photodynamic inactivation based on the combined actions of photosensitizers, light, and oxygen presents a promising alternative for eliminating bacteria compared to conventional water disinfection methods. However, a significant challenge in this approach is the inability to retrieve photosensitizers after phototreatment, posing potential adverse environmental impacts. Additionally, conventional photosensitizers often exhibit limited photostability and photodynamic efficiency. This study addresses these challenges by employing an aggregation-induced emission (AIE) photosensitizer, iron oxide magnetic nanoparticles (Fe3O4 MNPs), and Pluronic F127 to fabricate AIE magnetic nanoparticles (AIE MNPs). AIE MNPs not only exhibit fluorescence imaging capabilities and superior photosensitizing ability but also demonstrate broad-spectrum bactericidal activities against both Gram-positive and Gram-negative bacteria. The controlled release of TPA-Py-PhMe and magnetic characteristics of the AIE MNPs facilitate reuse and recycling for multiple cycles of bacterial inactivation in water. Our findings contribute valuable insights into developing environmentally friendly disinfectants, emphasizing the full potential of AIE photosensitizers in photodynamic inactivation beyond biomedical applications.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria
14.
Angew Chem Int Ed Engl ; 63(11): e202313930, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38055202

ABSTRACT

Life science has progressed with applications of fluorescent probes-fluorophores linked to functional units responding to biological events. To meet the varied demands across experiments, simple organic reactions to connect fluorophores and functional units have been developed, enabling the on-demand selection of fluorophore-functional unit combinations. However, organic synthesis requires professional equipment and skills, standing as a daunting task for life scientists. In this study, we present a simple, fast, and convenient strategy for probe preparation: co-aggregation of hydrophobic molecules. We focused on tetrazine-a difficult-to-prepare yet useful functional unit that provides effective bioorthogonal reactivity and strong fluorogenicity. Simply mixing the tetrazine molecules and aggregation-induced emission (AIE) luminogens in water, co-aggregation is induced, and the emission of AIE luminogens is quenched. Subsequent click reaction bioorthogonally turns on the emission, identifying these coaggregates as fluorogenic probes. Thanks to this bioorthogonal fluorogenicity, we established a new time-gated fluorescence bioimaging technique to distinguish overlapping emission signals, enabling multi-organelle imaging with two same-color fluorophores. Our study showcases the potential of this co-aggregation method for the on-demand preparation of fluorescent probes as well as protocols and molecular design principles in this approach, offering an effective solution to evolving needs in life science research.

15.
Org Lett ; 25(49): 8856-8860, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38059593

ABSTRACT

A combination of DFT calculations and experiments is used to describe how the selection of a promoter can control the stereochemical outcome of glycosylation reactions with the deoxy sugar saccharosamine. Depending on the promoter, either α- or ß-linked reactive intermediates are formed. These studies show that differential modes of activation lead to the formation of distinct intermediates that undergo highly selective reactions through an SN2-like mechanism.

16.
J Org Chem ; 88(22): 15569-15579, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37933138

ABSTRACT

The conformational study of saccharides and glycomimetics in solution is critical for a comprehensive understanding of their interactions with biological receptors and enabling the design of optimized glycomimetics. Here, we report a nuclear magnetic resonance (NMR) study centered on the conformational properties of the hydroxymethyl group and glycosidic bond of four series of aryl S-glucosides. We found that in acetyl-protected and free aryl S-ß-glucosides, the rotational equilibrium around the C5-C6 bond (hydroxymethyl group) exhibits a linear dependence on the electronic properties of the aglycone, namely, as the aryl's substituent electron-withdrawing character increases, the dominance of the gg rotamer declines and the gt contribution rises. Likewise, the conformational equilibrium around the glycosidic C1-S bond also depends on the aglycone's electronic properties, where glucosides carrying electron-poor aglycones exhibit stiffer glycosidic bonds in comparison to their electron-rich counterparts. In the case of the α anomers, the aglycone's effect over the glycosidic bond conformation is like that observed on their ß isomers; however, we observe no aglycone's influence over the hydroxymethyl group conformation in the α-glucosides.


Subject(s)
Glucosides , Glycosides , Molecular Conformation , Glycosides/chemistry
17.
BMJ Case Rep ; 16(11)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989332

ABSTRACT

We report a combination therapy to successfully treat a patient with Hodgkin's lymphoma complicated by vanishing bile duct syndrome. Our patient was in his 20s and presented with jaundice, emesis, B symptoms and diffuse lymphadenopathy along with cholestatic liver injury prompting a liver biopsy, which revealed this diagnosis, after the exclusion of other aetiologies. Our treatment regimen incorporated brentuximab along with other more conventional agents which attempted to maximise therapeutic efficacy while minimising the consequences of hepatotoxicity on the treatment protocol. Although this patient's treatment course was complicated because of neutropenic infections, the patient achieved a complete metabolic response and is now more than 1 year off therapy.


Subject(s)
Antineoplastic Agents , Cholestasis , Hodgkin Disease , Adult , Humans , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Bile Ducts/pathology , Cholestasis/drug therapy , Cholestasis/etiology , Cholestasis/pathology , Clinical Protocols , Hodgkin Disease/complications , Hodgkin Disease/drug therapy , Hodgkin Disease/pathology , Liver/pathology , Male
18.
ACS Nano ; 17(21): 21182-21194, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37901961

ABSTRACT

The technology of aggregation-induced emission (AIE) presents a promising avenue for fluorescence imaging-guided photodynamic cancer therapy. However, existing near-infrared AIE photosensitizers (PSs) frequently encounter limitations, including tedious synthesis, poor tumor retention, and a limited understanding of the underlying molecular biology mechanism. Herein, an effective molecular design paradigm of anion-π+ interaction combined with the inherently crowded conformation that could enhance fluorescence efficacy and reactive oxygen species generation was proposed through a concise synthetic method. Mechanistically, upon photosensitization, the Hippo signaling pathway contributes to the death of melanoma cells and promotes the nuclear location of its downstream factor, yes-associated protein, which regulates the transcription and expression of apoptosis-related genes. The finding in this study would trigger the development of high-performance and versatile AIE PSs for precision cancer therapy based on a definite regulatory mechanism.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Hippo Signaling Pathway , Precision Medicine , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism
19.
J Am Chem Soc ; 145(41): 22776-22787, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37812516

ABSTRACT

The manipulation of electron donor/acceptor (D/A) shows an endless impetus for innovating optical materials. Currently, there is booming development in electron donor design, while research on electron acceptor engineering has received limited attention. Inspired by the philosophical idea of "more is different", two systems with D'-D-A-D-D' (1A system) and D'-D-A-A-D-D' (2A system) structures based on acceptor engineering were designed and studied. It was demonstrated that the 1A system presented a weak aggregation-induced emission (AIE) to aggregation-caused quenching (ACQ) phenomenon, along with the increased acceptor electrophilicity and planarity. In sharp contrast, the 2A system with one more acceptor exhibited an opposite ACQ-to-AIE transformation. Interestingly, the fluorophore with a more electron-deficient A-A moiety in the 2A system displayed superior AIE activity. More importantly, all compounds in the 2A system showed significantly higher molar absorptivity (ε) in comparison to their counterparts in the 1A system. Thanks to the highest ε, near-infrared-II (NIR-II, 1000-1700 nm) emission, desirable AIE property, favorable reactive oxygen species (ROS) generation, and high photothermal conversion efficiency, a representative member of the 2A system handily performed in fluorescence-photoacoustic-photothermal multimodal imaging-guided photodynamic-photothermal collaborative therapy for efficient tumor elimination. Meanwhile, the NIR-II fluorescence imaging of blood vessels and lymph nodes in living mice was also accomplished. This study provides the first evidence that the dual-connected acceptor tactic could be a new molecular design direction for the AIE effect, resulting in high ε, aggregation-intensified NIR-II fluorescence emission, and improved ROS and heat generation capacities of phototheranostic agents.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Reactive Oxygen Species , Optical Imaging , Fluorescent Dyes/chemistry , Theranostic Nanomedicine/methods , Nanoparticles/chemistry
20.
Luminescence ; 38(12): 2086-2094, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37740529

ABSTRACT

Light-mediated therapies such as photodynamic therapy (PDT) are considered emerging cancer treatment strategies. However, there are still lots of defect with common photosensitizers (PSs), such as short emission wavelength, weak photostability, poor cell permeability, and low PDT efficiency. Therefore, it is very important to develop high-performance PSs. Recently, luminogens with aggregation-induced emission (AIE) characteristics and red/near-infrared (NIR) emissive have been reported as promising PSs for image-guided cancer therapy, due to them being able to prevent autofluorescence in physiological environments, their enhanced fluorescence in the aggregated state, and generation of reactive oxygen species (ROS). Herein, we developed PSs named TBTCPM and MTBTCPM with donor-acceptor (D-A) structures, strong red/NIR, excellent targeting specificities to good cell permeability, and high photostability. Interestingly, both of them can efficiently generate ROS under white light irradiation and possess excellent killing effect on cancer cells. This study, thus, not only demonstrates applications in cell image-guided PDT cancer therapy performances but also provides strategy for construction of AIEgens with long emission wavelengths.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species , Neoplasms/drug therapy , Light
SELECTION OF CITATIONS
SEARCH DETAIL