Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cells ; 13(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474415

ABSTRACT

Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.


Subject(s)
Interleukin-15 , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Killer Cells, Natural , K562 Cells , T-Lymphocytes , Cytokines/metabolism , Receptors, Chimeric Antigen/metabolism
2.
Cancer Discov ; 12(4): 958-983, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35179201

ABSTRACT

Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE: This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Antiviral Restriction Factors , COVID-19 , Neoplasms , T-Lymphocytes , Antibodies, Neutralizing , Antiviral Restriction Factors/immunology , COVID-19/immunology , Humans , Neoplasms/complications , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology
3.
Front Immunol ; 12: 592031, 2021.
Article in English | MEDLINE | ID: mdl-34335558

ABSTRACT

Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of 'neoepitope'-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells. TCR αß-dependent therapies should account for tumor heterogeneity and availability of the TCR repertoire capable of reacting to neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma may also be targeted to achieve tumor-containment by changing the immune-contexture in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell genome may also contain many aberrantly expressed, non-mutated tumor-associated antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined with several layers of bioinformatic analysis is commonly used to predict possible neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is used for predicting private mutations from WES and RNA-Seq data followed by the construction of synthetic peptides tailored for immunological response assessment reflecting the patient's tumor mutations, guided by MHC typing. Subsequent immunoassays allow the detection of differential IFN-γ production patterns associated with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL. These bioinformatics tools, in addition to histopathological assessment, immunological readouts from functional bioassays and deep T-cell 'adaptome' analyses, are expected to advance discovery and development of next-generation personalized precision medicine strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Computational Biology , Humans , Neoplasms/therapy , Precision Medicine , T-Lymphocytes/transplantation , Whole Genome Sequencing
4.
Int J Infect Dis ; 98: 454-459, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32693089

ABSTRACT

Genetic factors such as the HLA type of patients may play a role in regard to disease severity and clinical outcome of patients with COVID-19. Taking the data deposited in the GISAID database, we made predictions using the IEDB analysis resource (TepiTool) to gauge how variants in the SARS-CoV-2 genome may change peptide binding to the most frequent MHC-class I and -II alleles in Africa, Asia and Europe. We caracterized how a single mutation in the wildtype sequence of of SARS-CoV-2 could influence the peptide binding of SARS-CoV-2 variants to MHC class II, but not to MHC class I alleles. Assuming the ORF8 (L84S) mutation is biologically significant, selective pressure from MHC class II alleles may select for viral varients and subsequently shape the quality and quantity of cellular immune responses aginast SARS-CoV-2. MHC 4-digit typing along with viral sequence analysis should be considered in studies examining clinical outcomes in patients with COVID-19.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/genetics , Coronavirus Infections/mortality , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/mortality , Africa , Alleles , Asia , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Europe , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
5.
Int J Mol Sci ; 20(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018546

ABSTRACT

Immune responses to human cytomegalovirus (CMV) can be used to assess immune fitness in an individual. Further to its clinical significance in posttransplantation settings, emerging clinical and translational studies provide examples of immune correlates of protection pertaining to anti-CMV immune responses in the context of cancer or infectious diseases, e.g., tuberculosis. In this viewpoint, we provide a brief overview about CMV-directed immune reactivity and immune fitness in a clinical context and incorporate some of our own findings obtained from peripheral blood or tumour-infiltrating lymphocytes (TIL) from patients with advanced cancer. Observations in patients with solid cancers whose lesions contain both CMV and tumour antigen-specific T-cell subsets are highlighted, due to a possible CMV-associated "bystander" effect in amplifying local inflammation and subsequent tumour rejection. The role of tumour-associated antibodies recognising diverse CMV-derived epitopes is also discussed in light of anti-cancer immune responses. We discuss here the use of anti-CMV immune responses as a theranostic tool-combining immunodiagnostics with a personalised therapeutic potential-to improve treatment outcomes in oncological indications.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Neoplasms/virology , Animals , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/therapy , Humans , Immunity , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Precision Medicine/methods
6.
J Mol Med (Berl) ; 97(5): 711-722, 2019 05.
Article in English | MEDLINE | ID: mdl-30915480

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is the secretory chloride channel in epithelial tissues that has a central role in cystic fibrosis (CF) lung and gastrointestinal disease. A recent publication demonstrates a close association between CFTR and TMEM16A, the calcium-activated chloride channel. Thus, no CFTR chloride currents could be detected in airways and large intestine from mice lacking epithelial expression of TMEM16A. Here, we demonstrate that another plasma membrane-localized TMEM16 paralogue, TMEM16F, can compensate for the lack of TMEM16A. Using TMEM16 knockout mice, human lymphocytes, and a number of human cell lines with endogenous protein expression or heterologous expression, we demonstrate that CFTR can only function in the presence of either TMEM16A or TMEM16F. Double knockout of intestinal epithelial TMEM16A/F expression did not produce offsprings, suggesting a lethal phenotype in utero. Plasma membrane-localized TMEM16A or TMEM16F is required for exocytosis and expression of CFTR in the plasma membrane. TMEM16A/F proteins may therefore have an impact on disease severity in CF. KEY MESSAGES: • Cystic fibrosis is caused by the defective Cl- channel cystic fibrosis transmembrane conductance regulator (CFTR). • A close relationship exists between CFTR and the calcium-activated chloride channels TMEM16A/TMEM16F. • In conditional airway and intestinal knockout mice, lymphocytes from Scott disease patients and in overexpressing cells, CFTR is not functional in the absence of TMEM16A and TMEM16F. • TMEM16A and TMEM16F support membrane exocytosis and are essential for plasma membrane insertion of CFTR.


Subject(s)
Anoctamin-1/metabolism , Anoctamins/metabolism , Cell Membrane/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Phospholipid Transfer Proteins/metabolism , Animals , Anoctamin-1/analysis , Anoctamin-1/genetics , Anoctamins/analysis , Anoctamins/genetics , Cell Line , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/analysis , Exocytosis , HEK293 Cells , Humans , Mice, Knockout , Phospholipid Transfer Proteins/analysis , Phospholipid Transfer Proteins/genetics
7.
Front Cell Dev Biol ; 7: 362, 2019.
Article in English | MEDLINE | ID: mdl-32039196

ABSTRACT

The intricate interplay between the immune system and microbes is an essential part of the physiological homeostasis in health and disease. Immunological recognition of commensal microbes, such as bacterial species resident in the gut or lung as well as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV), in combination with a balanced immune regulation, is central to achieve immune-protection. Emerging evidence suggests that immune responses primed to guard against commensal microbes may cause unexpected pathological outcomes, e.g., chronic inflammation and/or malignant transformation. Furthermore, translocation of immune cells from one anatomical compartment to another, i.e., the gut-lung axis via the lymphatics or blood has been identified as an important factor in perpetrating systemic inflammation, tissue destruction, as well as modulating host-protective immune responses. We present in this review immune response patterns to pathogenic as well as non-pathogenic microbes and how these immune-recognition profiles affect local immune responses or malignant transformation. We discuss personalized immunological therapies which, directly or indirectly, target host biological pathways modulated by antimicrobial immune responses.

8.
Front Microbiol ; 10: 2924, 2019.
Article in English | MEDLINE | ID: mdl-31998254

ABSTRACT

Memory formation, guided by microbial ligands, has been reported for innate immune cells. Epigenetic imprinting plays an important role herein, involving histone modification after pathogen-/danger-associated molecular patterns (PAMPs/DAMPs) recognition by pattern recognition receptors (PRRs). Such "trained immunity" affects not only the nominal target pathogen, yet also non-related targets that may be encountered later in life. The concept of trained innate immunity warrants further exploration in cancer and how these insights can be implemented in immunotherapeutic approaches. In this review, we discuss our current understanding of innate immune memory and we reference new findings in this field, highlighting the observations of trained immunity in monocytic and natural killer cells. We also provide a brief overview of trained immunity in non-immune cells, such as stromal cells and fibroblasts. Finally, we present possible strategies based on trained innate immunity that may help to devise host-directed immunotherapies focusing on cancer, with possible extension to infectious diseases.

9.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 421-431, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29154949

ABSTRACT

An attractive possibility to treat Cystic Fibrosis (CF), a severe condition caused by dysfunctional CFTR, an epithelial anion channel, is through the activation of alternative (non-CFTR) anion channels. Anoctamin 1 (ANO1) was demonstrated to be a Ca2+-activated chloride channel (CaCC) and thus of high potential to replace CFTR. Despite that ANO1 is expressed in human lung CF tissue, it is present at the cell surface at very low levels. In addition, little is known about regulation of ANO1 traffic, namely which factors promote its plasma membrane (PM) localization. Here, we generated a novel cellular model, expressing an inducible 3HA-ANO1-eGFP construct, and validated its usage as a microscopy tool to monitor for ANO1 traffic. We demonstrate the robustness and specificity of this cell-based assay, by the identification of siRNAs acting both as ANO1 traffic enhancer and inhibitor, targeting respectively COPB1 and ESYT1 (extended synaptotagmin-1), the latter involved in coupling of the endoplasmic reticulum to the PM at specific microdomains. We further show that knockdown of ESYT1 (and family members ESYT2 and ESYT3) significantly decreased ANO1 current density. This ANO1 cell-based assay constitutes an important tool to be further used in high-throughput screens and drug discovery of high relevance for CF and cancer.


Subject(s)
Anoctamin-1/metabolism , Cystic Fibrosis/metabolism , Models, Biological , Neoplasm Proteins/metabolism , Synaptotagmins/metabolism , Anoctamin-1/genetics , Cell Line , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Humans , Neoplasm Proteins/genetics , Protein Transport , Synaptotagmins/genetics
10.
J Dairy Res ; 82(4): 416-25, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26290160

ABSTRACT

Feed restriction, and seasonal weight loss (SWL), are major setbacks for animal production in the tropics and the Mediterranean. They may be solved through the use of autochthonous breeds particularly well adapted to SWL. It is therefore of major importance to determine markers of tolerance to feed restriction of putative use in animal selection. Two indigenous breeds from the Canary Islands, Palmera and Majorera, are commonly used by dairy goat farmers and, interestingly, have different phenotype characteristics albeit with a common ancestry. Indeed, Majorera is well adapted to feed restriction whereas the Palmera is susceptible to feed restriction. In addition, regardless of their importance in dairy production, there are only a limited number of reports relating to these breeds and, to the best of our knowledge, there is no description of their blood metabolite standard values under control conditions or as affected by feed restriction. In this study we analysed the blood metabolite profiles in Majorera and Palmera goats aiming to establish the differential responses to feed restriction between the two breeds and to characterise their metabolite standard values under control conditions. We observed significant differences in creatinine, urea, non-esterified fatty acids (NEFAs), cholesterol, IGF-1 and T3 due to underfeeding. Furthermore, a PCA analysis, revealed that animals submitted to undernutrition could be distinguished from the control groups, with the formation of three separate clusters (Palmera individuals after 22 d of subnutrition (PE22); Majorera individuals after 22 d of subnutrition (ME22) and animals assigned to control conditions (MC0, MC22, PC0 and PC22)), highlighting different responses of the two breeds to undernutrition.


Subject(s)
Food Deprivation/physiology , Genetic Variation , Goats/blood , Animals , Blood Glucose , Blood Proteins , Chlorides/blood , Cholesterol/blood , Creatine Kinase/blood , Creatinine/blood , Fatty Acids, Nonesterified/blood , Female , Goats/genetics , Hydrocortisone , Hydroxybutyrates/blood , Insulin/blood , Insulin-Like Growth Factor I/metabolism , Leptin , Phosphorus/blood , Principal Component Analysis , Seasons , Sodium/blood , Triglycerides/blood , Triiodothyronine/blood , Urea/blood , Weight Loss
11.
J Dairy Res ; 81(3): 304-18, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24901899

ABSTRACT

The importance of small ruminants to the dairy industry has increased in recent years, especially in developing countries, where it has a high economic and social impact. Interestingly and despite the fact that the mammary gland is the specialised milk production organ, very few authors studied the modifications occurring in the mammary gland through the lactation period in production animals, particularly in the small ruminants, sheep (Ovis aries) and goat (Capra hircus). Nevertheless, understanding the different mammary gland patterns throughout lactation is essential to improve dairy production. In addition, associating these patterns with different milking frequencies, lactation number or different diets is also of high importance, directly affecting the dairy industry. The mammary gland is commonly composed of parenchyma and stroma, which includes the ductal system, with individual proportions of each changing during the different periods and yields in a lactation cycle. Indeed, during late gestation, as well as during early to mid-lactation, mammary gland expansion occurs, with an increase in the number of epithelial cells and lumen area, which leads to increment of the parenchyma tissue, as well as a reduction of stroma, corresponding macroscopically to the increase in mammary gland volume. Throughout late lactation, the mammary gland volume decreases owing to the regression of the secretory structure. In general, common mammary gland patterns have been shown for both goats and sheep throughout the several lactation stages, although the number of studies is limited. The main objective of this manuscript is to review the colostrogenesis and lactogenesis processes as well as to highlight the mammary gland morphological patterns underlying milk production during the lactation cycle for small ruminants, and to describe potential differences between goats and sheep, hence contributing to a better description of mammary gland development during lactation for these two poorly studied species.


Subject(s)
Goats/physiology , Lactation/physiology , Mammary Glands, Animal/physiology , Sheep/physiology , Animals , Female , Goats/anatomy & histology , Mammary Glands, Animal/anatomy & histology , Milk/metabolism , Sheep/anatomy & histology
12.
Trop Anim Health Prod ; 45(8): 1731-6, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23712398

ABSTRACT

Seasonal weight loss (SWL), caused by poor quality pastures during the dry season, is the major limitation to animal production in the tropics. One of the ways to counter this problem is to breed animals that show tolerance to SWL. The objective of this study was to understand the effect of feed restriction in milk production and live weight (LW) evolution in two goat breeds, with different levels of adaptation to nutritional stress: the Majorera (considered to be tolerant) and the Palmera (considered to be susceptible). A total of ten animals per breed were used. Animals were divided in four groups (two for each breed): a restricted group (restricted diet) and a control group. LW and milk yield parameters were recorded through a trial that lasted 23 days in total. Overall, there were no significant differences between both restricted groups, regarding neither LW nor milk yield reductions (LW reduction 13 % and milk yield reduction of 87 % for both restricted groups). In what concerns control groups, there were no significant differences between breeds, thought there were different increments at the end of the trial for both breeds regarding LW (6 and 4 %, for Majorera and Palmera, respectively) and milk yield (28 and 8 %, respectively for Majorera and Palmera). The lack of statistically significant differences between Palmera and Majorera LW and milk yields in restricted groups may be due to the fact that the controlled trial does not replicate harsh field conditions, in which Majorera would excel, and the stress induced by those differences.


Subject(s)
Food Deprivation/physiology , Goats/physiology , Milk/metabolism , Weight Loss/physiology , Animals , Female , Goats/classification , Goats/genetics , Lactation , Seasons , Spain , Weight Loss/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...