Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 12(21)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671868

ABSTRACT

Modern concrete infrastructure requires structural components with higher mechanical strength and greater durability. A solution is the addition of nanomaterials to cement-based materials, which can enhance their mechanical properties. Some such nanomaterials include nano-silica (nano-SiO2), nano-alumina (nano-Al2O3), nano-ferric oxide (nano-Fe2O3), nano-titanium oxide (nano-TiO2), carbon nanotubes (CNTs), graphene and graphene oxide. These nanomaterials can be added to cement with other reinforcement materials such as steel fibers, glass, rice hull powder and fly ash. Optimal dosages of these materials can improve the compressive, tensile and flexural strength of cement-based materials, as well as their water absorption and workability. The use of these nanomaterials can enhance the performance and life cycle of concrete infrastructures. This review presents recent researches about the main effects on performance of cement-based composites caused by the incorporation of nanomaterials. The nanomaterials could decrease the cement porosity, generating a denser interfacial transition zone. In addition, nanomaterials reinforced cement can allow the construction of high-strength concrete structures with greater durability, which will decrease the maintenance requirements or early replacement. Also, the incorporation of nano-TiO2 and CNTs in cementitious matrices can provide concrete structures with self-cleaning and self-sensing abilities. These advantages could help in the photocatalytic decomposition of pollutants and structural health monitoring of the concrete structures. The nanomaterials have a great potential for applications in smart infrastructure based on high-strength concrete structures.

2.
J Comp Neurol ; 501(3): 413-30, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17245705

ABSTRACT

The organization of the somatostatin-like-immunoreactive (SOM-ir) structures in the brain of anuran and urodele amphibians has been well documented, and significant differences were noted between the two amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study, we analyzed the anatomical distribution of SOM-ir cells and fibers in the brain of the gymnophionan Dermophis mexicanus. In addition, because of its known relationship with catecholamines in other vertebrates, double immunostaining for SOM and tyrosine hydroxylase was used to investigate this situation in the gymnophionan. Abundant SOM-ir cell bodies and fibers were widely distributed throughout the brain. In the telencephalon, pallial and subpallial cells were labeled, being most numerous in the medial pallium and amygdaloid region. Most of the SOM-ir neurons were found in the preoptic area and hypothalamus and showed a clear projection to the median eminence. Less conspicuously, SOM-ir structures were found in the thalamus, tectum, tegmentum, and reticular formation. Both SOM-ir cells and fibers were demonstrated in the spinal cord. The double-immunohistofluorescence technique revealed that catecholaminergic neurons and SOM-ir cells are largely intermingled in many brain regions but form totally separated populations. Many differences were found between the distribution of SOM-ir structures in Dermophis and that in anurans or urodeles. Some features were shared only with anurans, such as the abundant pallial SOM-ir cells, whereas others were common only to urodeles, such as the organization of the hypothalamohypophysial SOM-ir system. In addition, some characteristics were found only in Dermophis, such as the localization of the SOM-ir spinal cells and the lack of colocalization of catecholamines and SOM throughout the brain. Therefore, any conclusions concerning the SOM system in amphibians are incomplete without considering evidence for gymnophionans.


Subject(s)
Amphibians/metabolism , Brain/metabolism , Somatostatin/metabolism , Spinal Cord/metabolism , Tyrosine 3-Monooxygenase/metabolism , Amphibians/classification , Animals , Brain/cytology , Immunohistochemistry , Male , Nerve Fibers/metabolism , Neurons/metabolism , Spinal Cord/cytology , Tissue Distribution
3.
Brain Behav Evol ; 67(3): 150-64, 2006.
Article in English | MEDLINE | ID: mdl-16415570

ABSTRACT

Neuropeptide FF (NPFF) is an FMRFamide-related peptide widely distributed in the mammalian brain. NPFF immunohistochemistry labeled cell bodies in a few locations and dense fiber networks throughout the brain. Recently, the distribution of NPFF immunoreactive (NPFF-ir) cells and fibers in the brain of anuran and urodele amphibians was studied and, as in mammals, significant species differences were noted. To further assess general and derived features of the NPFF-containing neuron system in amphibians, we have investigated the distribution of NPFF-ir cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus by means of an antiserum against bovine NPFF. This distribution was compared to that of FMRFamide immunoreactivity. Major traits shared with anurans and urodeles were the abundant fiber labeling in the ventral telencephalon, hypothalamus, isthmus, ventrolateral medulla and dorsal spinal cord. In addition, in the three amphibian orders the majority of the NPFF-ir cells were located in the preoptic-hypothalamic region. However, distinct particular features were present in the gymnophionan such as the lack of NPFF-ir cells in the telencephalon, brainstem and spinal cord and the absence of NPFF-ir fibers in the hypophysis and the olfactory bulbs. This pattern was distinct from that observed for FMRFamide distribution. Striking differences were noted in the pallium, caudal hypothalamus and midbrain tegmentum where FMRFamide-containing cells were localized. The present results in Dermophis support the idea that data from gymnophionans must be included when stating the amphibian condition of a given system because important variations are obvious when gymnophionans are compared with anurans and urodeles.


Subject(s)
Amphibians/metabolism , FMRFamide/metabolism , Oligopeptides/metabolism , Prosencephalon/metabolism , Spinal Cord/metabolism , Animals , Immunohistochemistry , Neural Pathways/cytology , Neural Pathways/metabolism , Prosencephalon/cytology , Spinal Cord/cytology , Tissue Distribution
4.
Brain Behav Evol ; 60(2): 80-100, 2002.
Article in English | MEDLINE | ID: mdl-12373060

ABSTRACT

The organization of nitrergic systems in the brains of anuran and urodele amphibians was recently studied and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study we have investigated the distribution of neuronal elements that express nitric oxide synthase (NOS) in the brain of the gymnophionan amphibian Dermophis mexicanus by means of immunohistochemistry with specific antibodies against NOS and enzyme histochemistry for NADPH-diaphorase. Both techniques yielded identical results and were equally suitable to demonstrate the nitrergic system. In addition, they were useful tools in the identification of cell groups and brain structures, otherwise indistinct in the brains of caecilians. The distribution of nitrergic structures observed in Dermophis conforms to the overall amphibian pattern but numerous distinct peculiarities were also noted. These included a dense innervation of the olfactory bulbs but a lack of reactivity in olfactory and vomeronasal fibers and glomeruli. A large population of nitrergic cells in the striatum and the presence of thalamic neurons, as well as the specific distribution of nitrergic cells in the isthmic region, are some of the differential features in the gymnophionan brain. Given the variability among species in the same class of vertebrates any discussion including amphibians should also include evidence for gymnophionans.


Subject(s)
Brain/metabolism , Dihydrolipoamide Dehydrogenase/metabolism , NADP/metabolism , Nitric Oxide Synthase/metabolism , Amphibians , Animals , Brain/enzymology , Hypothalamus/metabolism , Mesencephalon/metabolism
5.
J Comp Neurol ; 448(3): 249-67, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12115707

ABSTRACT

The organization of the cholinergic system in the brain of anuran and urodele amphibians was recently studied, and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the limbless gymnophionans (caecilians). To further assess general and derived features of the cholinergic system in amphibians, we have investigated the distribution of choline acetyltransferase immunoreactive (ChAT-ir) cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus. This distribution showed particular features of gymnophionans such as the existence of a particularly large cholinergic population in the striatum, the presence of ChAT-ir cells in the mesencephalic tectum, and the organization of the cranial nerve motor nuclei. These peculiarities probably reflect major adaptations of gymnophionans to a fossorial habit. Comparison of our results with those in other vertebrates, including a segmental approach to correlate cell populations across species, shows that the general pattern of organization of cholinergic systems in vertebrates can be modified in certain species in response to adaptative processes that lead to morphological and behavioral modifications of members of a given class of vertebrates, as shown for gymnophionans.


Subject(s)
Acetylcholine/metabolism , Amphibians/metabolism , Brain/enzymology , Choline O-Acetyltransferase/metabolism , Cholinergic Fibers/enzymology , Neurons/enzymology , Amphibians/anatomy & histology , Animals , Brain/cytology , Brain Mapping , Cholinergic Fibers/ultrastructure , Cranial Nerves/cytology , Cranial Nerves/metabolism , Diencephalon/cytology , Diencephalon/metabolism , Immunohistochemistry , Mesencephalon/metabolism , Motor Neurons/metabolism , Neurons/cytology , Rhombencephalon/metabolism , Spinal Cord/cytology , Spinal Cord/metabolism , Telencephalon/cytology , Telencephalon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL