Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.647
Filter
1.
Heliyon ; 10(13): e34054, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071678

ABSTRACT

Constructing a suitable discrete fracture network (DFN) to represent rock fractures proves vital for tackling engineering projects involving rock masses. Among the commonly used models for constructing DFN, the circular disc model (CDM) and elliptical disc model (EDM) stand out. The selection between these models has been facilitated by the introduction of the Accuracy Representation Index (ARI), which quantitatively assesses their suitability. The existing methods for calculating ARI based on Monte Carlo simulations are time-consuming. In order to quickly estimate the ARI for CDM and EDM concerning any length-width ratio (k r ) of rectangular fracture, the paper derives analytical formulas based on the geometric relationships between circles and ellipses with rectangles. These formulas show that: (a) for the CDM, ARI is only related to k r , and its value decreases as k r increases; (b) for the EDM, ARI is dependent on the relationship between k r and the long-short axis length ratio (k e ) of the ellipse, and it has been theoretically proven that ARI reaches its maximum value of 0.91 when k r is equal to k e . Moreover, we apply ARI to the study of rock mass seepage characteristics, and the results show that ARI could reflect the error rate of permeability of the CDM and EDM for rock masses with rectangular fractures.

2.
Biochem Pharmacol ; 227: 116453, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059773

ABSTRACT

Spinal echinococcosis is one of the most overlooked zoonotic parasitic diseases worldwide. There is currently no safe and effective treatment to eradicate it, and research based on the physiological-metabolic signature of the disease is lacking. Herein, we repurposed agrimol B as a potent anti-hydatid compound and validated its pharmacological mechanism based on arginine uptake as a target through multi-omics sequencing. This herbal component suppressed energy metabolism and activated ROS aggregation by inducing mitochondrial membrane potential depolarization, which subsequently triggered autophagy-dependent apoptosis leading to parasite death. Moreover, we discovered that arginine deprivation induced metabolic changes led to a shift from ornithine to nitrogen oxide synthesis, thus boosting the iNOS enzyme-regulated dominant metabolic pathway. The excess NO targeted the mitochondrial respiratory chain complex IV to disrupt energy metabolic homeostasis and induced a downstream pathological waterfall effect to kill the hydatid. A novel metabolic regulatory mechanism targeting mitochondrial damage for arginine starvation therapy was discovered. Finally, arginine depletion was found to be superior to the anti-spinal echinococcosis effect of albendazole and accompanied by the potential for disc protection. This study unveils the role of arginine in the physiological metabolism of Echinococcus granulosus and reveals the value of targeting arginine metabolism as a potential therapy. In addition, agrimol B is proposed as a promising therapeutic strategy for spinal echinococcosis to block arginine uptake and break this parasite's metabolic balance.

3.
Sci China Life Sci ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39037698

ABSTRACT

Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.

4.
J Cardiothorac Surg ; 19(1): 423, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970107

ABSTRACT

OBJECTIVE: To compare the treatment outcomes among percutaneous mechanical thrombectomy (PMT) with AngioJet, Catheter-directed thrombolysis (CDT), and a combination of both. METHODS: One hundred forty nine patients with acute or sub-acute iliac-femoral vein thrombosis accepting CDT and/or PMT were divided into three groups respectively: PMT group, CDT group, PMT + CDT group (PMT followed by CDT). The severity of thrombosis was evaluated by venographic scoring system. Technical success was defined as restored patent deep venous blood flow after CDT and/or PMT. Clinical follow-up were assessed by ultrasound or venography imaging. The primary endpoints were recurrence of DVT, and severity level of post-thrombotic syndrome (PTS) during the follow-up. RESULTS: Technical success and immediate clinical improvements were achieved on all patients. The proportion of sub-acute DVT and the venographic scoring in PMT + CDT group were significantly higher than that in CDT group and PMT group (proportion of sub-acute DVT: p = 0.032 and p = 0.005, respectively; venographic scoring: p < 0.001, respectively). The proportion of May-Thurner Syndrome was lower in PMT group than that in CDT and PMT + CDT group (p = 0.026 and p = 0.005, respectively). The proportion of DVT recurrence/stent thrombosis was significantly higher in CDT group than that in PMT + CDT group (p = 0.04). The severity of PTS was the highest in CDT group ( χ2 = 14.459, p = 0.006) compared to PMT group (p = 0.029) and PMT + CDT group (p = 0.006). CONCLUSION: Patients with sub-acute DVT, high SVS scoring and combined May-Thurner Syndrome were recommended to take PMT + CDT treatment and might have lower rate of DVT recurrence/stent thrombosis and severe PTS. Our study provided evidence detailing of PMT + CDT therapy.


Subject(s)
Thrombectomy , Thrombolytic Therapy , Venous Thrombosis , Humans , Male , Venous Thrombosis/therapy , Female , Middle Aged , Thrombolytic Therapy/methods , Thrombectomy/methods , Treatment Outcome , Adult , Retrospective Studies , Aged , Iliac Vein/surgery , Iliac Vein/diagnostic imaging , Combined Modality Therapy , Femoral Vein , Postthrombotic Syndrome , Mechanical Thrombolysis/methods , Phlebography
5.
Nature ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048823

ABSTRACT

The brain is highly sensitive to damage caused by infection and inflammation1,2. Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis3. It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively4-6. Notably, Tmeff1-/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system.

6.
Front Nutr ; 11: 1421032, 2024.
Article in English | MEDLINE | ID: mdl-39021593

ABSTRACT

Pancreatic fat is associated with obesity and type 2 diabetes mellitus (T2DM); however, the relationship between different types of pancreatic fat and diabetes status remains unclear. Therefore, we aimed to determine the potential of different types of pancreatic fat accumulation as a risk factor for T2DM in overweight or obese patients. In total, 104 overweight or obese patients were recruited from January 2020 to December 2022. The patients were divided into three groups: normal glucose tolerance (NGT), impaired fasting glucose or glucose tolerance (IFG/IGT), and T2DM. mDixon magnetic resonance imaging (MRI) was used to detect pancreatic fat in all three groups of patients. The pancreatic head fat (PHF), body fat (PBF), and tail fat (PTF) in the IFG/IGT group were 21, 20, and 31% more than those in the NGT group, respectively. PHF, PBF, and PTF were positively associated with glucose metabolic dysfunction markers in the NGT group, and inter-lobular fat volume (IFV) was positively associated with these markers in the IFG/IGT group. The areas under the receiver operating characteristic curves for PHF, PBF, and PTF (used to evaluate their diagnostic potential for glucose metabolic dysfunction) were 0.73, 0.73, and 0.78, respectively, while those for total pancreatic volume (TPV), pancreatic parenchymal volume, IFV, and IFV/TPV were 0.67, 0.67, 0.66, and 0.66, respectively. These results indicate that intra-lobular pancreatic fat, including PHF, PTF, and PBF, may be a potential independent risk factor for the development of T2DM. Additionally, IFV exacerbates glucose metabolic dysfunction. Intra-lobular pancreatic fat indices were better than IFV for the diagnosis of glucose metabolic dysfunction.

7.
Chem Commun (Camb) ; 60(55): 7061-7064, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38904326

ABSTRACT

CO2 capture by deep eutectic solvents (DESs) formed between 1,3-bis(isopropyl)imidazolium 1,2,4-triazolide ([IiPim][Triz]) and ethylene glycol (EG) is investigated in this study. [IiPim][Triz]-EG DESs exhibit a capacity of ∼1.0 mol CO2 per mol DES at 1.0 atm and 25 °C. Surprisingly, mechanistic results disclose that CO2 reacts with EG but does not bind with the C-2 site of the [IiPim]+ cation, which may be due to the high steric hindrance of the C-2 site of the N-heterocyclic carbene IiPim present in [IiPim][Triz]-EG DESs.

8.
Sci Technol Adv Mater ; 25(1): 2357064, 2024.
Article in English | MEDLINE | ID: mdl-38835630

ABSTRACT

Organic excess electron compounds with significant nonlinear optical (NLO) properties are widely employed in optoelectronic applications. Herein, single-alkali metals with diaza[2.2.2] cryptand (M@crypt,M=Li, Na, and K) are investigated for optoelectronic and NLO properties by using the density functional theory. Thermodynamic and kinetic stabilities of present complexes are computed through interaction energy (Eint) and ab-initio molecular dynamic (AIMD) simulations. M@crypt complexes carry excess electrons and mimic molecular electrides. Quantum theory of atoms in molecules (QTAIM) analysis and reduced density gradient (RDG) spectra demonstrate the roles of the weak van der Waals (vdW) interactions between metal and complexant. The remarkable hyperpolarizability (ßo) value up to 1.41 × 106 au may be credited to the presence of loosely bound excess electrons. The hyper Rayleigh scattering hyperpolarizability (ßHRS) is recorded up to 1.31 × 106 au for the K@crypt. Furthermore, frequency-dependent first-order and second-order hyperpolarizability is more prominent at the applied frequency of ω = 0.042823 au. The electron localizing function (ELF) and localized orbital locator (LOL) analysis further disclose the nature of interaction between alkali metal and complexant. The TD-DFT method is adopted to get excited state parameters and absorbance properties. An electron density difference map (EDDM) is exploited to evaluate the orbital contributions in excited states. Hence, the studied electride may become a promising candidate for NLO materials. We anticipate that the present work will provide insight into further development of molecular electride for optoelectronic applications.


Organic electrides M@cryptand [2.2.2] (where M=Li, Na, and K) are examined as excess electrons, where vdW forces play important roles in promoting the NLO properties.

9.
J Integr Plant Biol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860597

ABSTRACT

The development of flowers in soybean (Glycine max) is essential for determining the yield potential of the plant. Gene silencing pathways are involved in modulating flower development, but their full elucidation is still incomplete. Here, we conducted a forward genetic screen and identified an abnormal flower mutant, deformed floral bud1-1 (Gmdfb1-1), in soybean. We mapped and identified the causal gene, which encodes a member of the armadillo (ARM)-repeat superfamily. Using small RNA sequencing (sRNA-seq), we found an abnormal accumulation of small interfering RNAs (siRNAs) and microRNA (miRNAs) in the Gmdfb1 mutants. We further demonstrated that GmDFB1 interacts with the RNA exosome cofactor SUPER KILLER7 (GmSKI7). Additionally, GmDFB1 interacts with the PIWI domain of ARGONAUTE 1 (GmAGO1) to inhibit the cleavage efficiency on the target genes of sRNAs. The enhanced gene silencing mediated by siRNA and miRNA in the Gmdfb1 mutants leads to the downregulation of their target genes associated with flower development. This study revealed the crucial role of GmDFB1 in regulating floral organ identity in soybean probably by participating in two distinct gene silencing pathways.

10.
Cell Biosci ; 14(1): 73, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845051

ABSTRACT

Recent studies have shifted the spotlight from adult disease to gametogenesis and embryo developmental events, and these are greatly affected by various environmental chemicals, such as drugs, metabolites, pollutants, and others. Growing research has highlighted the critical importance of identifying and understanding the roles of chemicals in reproductive biology. However, the functions and mechanisms of chemicals in reproductive processes remain incomplete. We developed a comprehensive database called the Reproductive Chemical Database (RCDB) ( https://yu.life.sjtu.edu.cn/ChenLab/RCDB ) to facilitate research on chemicals in reproductive biology. This resource is founded on rigorous manual literature extraction and precise protein target prediction methodologies. This database focuses on the delineation of chemicals associated with phenotypes, diseases, or endpoints intricately associated with four important reproductive processes: female and male gamete generation, fertilization, and embryo development in human and mouse. The RCDB encompasses 93 sub-GO processes, and it revealed 1447 intricate chemical-biological process interactions. To date, the RCDB has meticulously cataloged and annotated 830 distinct chemicals, while also predicting 614 target proteins from a selection of 3800 potential candidates. Additionally, the RCDB offers an online predictive tool that empowers researchers to ascertain whether specific chemicals play discernible functional roles in these reproductive processes. The RCDB is an exhaustive, cross-platform, manually curated database, which provides a user-friendly interface to search, browse, and use reproductive processes modulators and their comprehensive related information. The RCDB will help researchers to understand the whole reproductive process and related diseases and it has the potential to promote reproduction research in the pharmacological and pathophysiological areas.

11.
Parasit Vectors ; 17(1): 274, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937791

ABSTRACT

BACKGROUND: Indoor residual spraying (IRS) has been implemented to prevent malaria in Zambia for several decades, but its effectiveness has not been evaluated long term and in Vubwi District yet. This study aimed to assess the association between IRS and the malaria burden in Zambia and Vubwi District and to explore the factors associated with refusing IRS. METHODS: A retrospective study was used to analyze the association between IRS and malaria incidence in Zambia in 2001-2020 and in Vubwi District in 2014-2020 by Spearman correlation analysis. A case-control study was used to explore the factors associated with IRS refusals by households in Vubwi District in 2021. A logistic regression model was performed to identify factors associated with IRS refusals. RESULTS: The malaria incidence reached its peak (391/1000) in 2001 and dropped to the lowest (154/1000) in 2019. The annual percentage change in 2001-2003, 2003-2008, 2008-2014, 2014-2018 and 2018-2020 was - 6.54%, - 13.24%, 5.04%, - 10.28% and 18.61%, respectively. A significantly negative correlation between the percentage of population protected by the IRS against the total population in Zambia (coverage) and the average malaria incidence in the whole population was observed in 2005-2020 (r = - 0.685, P = 0.003) and 2005-2019 (r = - 0.818, P < 0.001). Among 264 participants (59 in the refuser group and 205 in the acceptor group), participants with specific occupations (self-employed: OR 0.089, 95% CI 0.022-0.364; gold panning: OR 0.113, 95% CI 0.022-0.574; housewives: OR 0.129, 95% CI 0.026-0.628 and farmers: OR 0.135, 95% CI 0.030-0.608 compared to employees) and no malaria case among household members (OR 0.167; 95% CI 0.071-0.394) had a lower risk of refusing IRS implementation, while those with a secondary education level (OR 3.690, 95% CI 1.245-10.989) had a higher risk of refusing IRS implementation compared to those who had never been to school. CONCLUSIONS: Increasing coverage with IRS was associated with decreasing incidence of malaria in Zambia, though this was not observed in Vubwi District, possibly because of the special geographical location of Vubwi District. Interpersonal communication and targeted health education should be implemented at full scale to ensure household awareness and gain community trust.


Subject(s)
Insecticides , Malaria , Mosquito Control , Zambia/epidemiology , Humans , Case-Control Studies , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Mosquito Control/methods , Incidence , Retrospective Studies , Insecticides/administration & dosage , Female , Male , Animals , Adult , Child, Preschool , Child , Adolescent
12.
Pharmacol Rev ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866561

ABSTRACT

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well-known modification intricately associated with the pathogenesis of CMDs This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies including multi-omics, intestinal microflora analysis, organoid and single-cell sequencing techniques are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assesse the current literatures to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. Significance Statement The comprehensive review covers recent developments in H2S biology and pharmacology in CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.

13.
PLoS One ; 19(6): e0302530, 2024.
Article in English | MEDLINE | ID: mdl-38905184

ABSTRACT

At present, the mechanism of fluorosis-induced damage to the hepatic system is unclear. Studies have shown that excess fluoride causes some degree of damage to the liver, including inflammation. The SDF-1/CXCR4 signaling axis has been reported to have an impact on the regulation of inflammation in human cells. In this study, we investigated the role of the SDF-1/CXCR4 signaling axis and related inflammatory factors in fluorosis through in vitro experiments on human hepatic astrocytes (LX-2) cultured with sodium fluoride. CCK-8 assays showed that the median lethal dose at 24 h was 2 mmol/l NaF, and these conditions were used for subsequent enzyme-linked immunosorbent assays (ELISAs) and quantitative real-time polymerase chain reaction (qPCR) analysis. The protein expression levels of SDF-1/CXCR4 and the related inflammatory factors nuclear factor-κB (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1ß (IL-1ß) were detected by ELISAs from the experimental and control groups. The mRNA expression levels of these inflammatory indicators were also determined by qPCR in both groups. Moreover, the expression levels of these factors were significantly higher in the experimental group than in the control group at both the protein and mRNA levels (P < 0.05). Excess fluorine may stimulate the SDF-1/CXCR4 signaling axis, activating the inflammatory NF-κB signaling pathway and increasing the expression levels of the related inflammatory factors IL-6, TNF-α and IL-1ß. Identification of this mechanism is important for elucidating the pathogenesis of fluorosis-induced liver injury.


Subject(s)
Chemokine CXCL12 , Hepatocytes , Receptors, CXCR4 , Sodium Fluoride , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Sodium Fluoride/toxicity , Sodium Fluoride/pharmacology , Hepatocytes/metabolism , Hepatocytes/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Cell Line , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Inflammation/metabolism , Inflammation/chemically induced
14.
Phytomedicine ; 131: 155771, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851101

ABSTRACT

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.


Subject(s)
Cardiomyopathies , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Sepsis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cardiomyopathies/drug therapy , Sepsis/drug therapy , Sepsis/complications , Mice , Male , Inflammasomes/metabolism , Inflammasomes/drug effects , Lipoylation/drug effects , Rats , Oxidative Stress/drug effects , Cell Line , Lipopolysaccharides , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Interleukin-1beta/metabolism , Interleukin-18/metabolism
15.
Clin Chim Acta ; 561: 119759, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38880274

ABSTRACT

BACKGROUND: Tic disorder (TD) is a polygenic neurodevelopmental disorder with high susceptibility. However, identifying high-confidence risk genes has been challenging due to poor replication across multiple studies. METHODS: Whole-exome sequencing was performed on 390 TD patients and 372 unaffected individuals in a Chinese Han population. Analysis of variance, burden analysis and in silico prediction were used to identify candidate genes for TD. To facilitate data analysis and to focus on high-confidence genes, we defined a panel of 160 genes as known causal or candidate TD genes from previous studies. Gene enrichment and protein-protein interaction analysis were utilized to detect potential novel TD risk genes. RESULTS: Totally, 14 variants across 12 known TD candidate genes were considered potential susceptibility variants. Ten variants across 10 known TD candidate genes were identified as potential disease-causing variants. Burden analysis identified variants of 28 known genes were significantly excess in TD patients. In addition, 354 previously unproven TD genes are over-represented in patients. Genes enriched in the PI3K-Akt signaling, sphingolipid metabolism and serotonergic synaptic pathways, as well as those interacting with FN1, were considered potential new candidate genes for TD. CONCLUSIONS: This is the largest WES study focusing on TD patients in a Chinese Han population. Several variants recurring in our cohort were identified as high-confidence risk loci for TD. Moreover, we provided potential new risk genes that may be prioritized for further investigation.


Subject(s)
Exome Sequencing , Tic Disorders , Adolescent , Child , Female , Humans , Male , China , East Asian People/genetics , Genetic Predisposition to Disease , Tic Disorders/genetics
16.
J Affect Disord ; 361: 751-759, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38885845

ABSTRACT

BACKGROUND: Compared to monetary rewards, depressive symptoms are specifically associated with abnormal social reward processing. In addition, individuals with melancholic depression may exhibit more significant reward-related impairments. However, there is still limited understanding of the specific alterations in social reward processing in individuals with melancholic depression. METHODS: Forty patients with melancholic major depressive disorder (MDD), forty patients with non-melancholic MDD, and fifty healthy controls participated in the social incentive delay (SID) tasks with event-related potential (ERP) recording. We measured one anticipatory ERP(cue-N2) and two consummatory ERPs (FRN, fb-P3). Furthermore, we examined correlation between FRN and consummatory anhedonia. RESULTS: Melancholic MDD patients showed less anticipation of social rewards (cue-N2). Concurrently, melancholic individuals demonstrated diminished reception of social rewards, as evidenced by reduced amplitudes of FRN. Notably, the group x condition interaction effect on FRN was significant (F (2, 127) = 4.15, p = 0.018, η2ρ = 0.061). Melancholic MDD patients had similar neural responses to both gain and neutral feedback (blunted reward positivity), whereas non-melancholic MDD patients (t (39) = 3.09, p = 0.004) and healthy participants (t (49) = 5.25, p < 0.001) had smaller FRN amplitudes when receiving gain feedback relative to neutral feedback. In addition, there was a significant correlation between FRN and consummatory anhedonia in MDD patients. CONCLUSIONS: Our findings indicated that individuals with melancholic MDD exhibit attenuated neural responses to both anticipated and consumed social rewards. This suggests that aberrant processing of social rewards could serve as a potential biomarker for melancholic MDD.


Subject(s)
Anhedonia , Depressive Disorder, Major , Electroencephalography , Evoked Potentials , Reward , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Male , Female , Adult , Evoked Potentials/physiology , Anhedonia/physiology , Middle Aged , Motivation/physiology , Anticipation, Psychological/physiology , Social Behavior , Cues , Young Adult , Case-Control Studies
17.
Front Immunol ; 15: 1337208, 2024.
Article in English | MEDLINE | ID: mdl-38799463

ABSTRACT

Objective: To describe the lipid metabolic profile of different patients with coronavirus disease 2019 (COVID-19) and contribute new evidence on the progression and severity prediction of COVID-19. Methods: This case-control study was conducted in Peking University Third Hospital, China. The laboratory-confirmed COVID-19 patients aged ≥18 years old and diagnosed as pneumonia from December 2022 to January 2023 were included. Serum lipids were detected. The discrimination ability was calculated with the area under the curve (AUC). A random forest (RF) model was conducted to determine the significance of different lipids. Results: Totally, 44 COVID-19 patients were enrolled with 16 mild and 28 severe patients. The top 5 super classes were triacylglycerols (TAG, 55.9%), phosphatidylethanolamines (PE, 10.9%), phosphatidylcholines (PC, 6.8%), diacylglycerols (DAG, 5.9%) and free fatty acids (FFA, 3.6%) among the 778 detected lipids from the serum of COVID-19 patients. Certain lipids, especially lysophosphatidylcholines (LPCs), turned to have significant correlations with certain immune/cytokine indexes. Reduced level of LPC 20:0 was observed in severe patients particularly in acute stage. The AUC of LPC 20:0 reached 0.940 in discriminating mild and severe patients and 0.807 in discriminating acute and recovery stages in the severe patients. The results of RF models also suggested the significance of LPCs in predicting the severity and progression of COVID-19. Conclusion: Lipids probably have the potential to differentiate and forecast the severity, progression, and clinical outcomes of COVID-19 patients, with implications for immune/inflammatory responses. LPC 20:0 might be a potential target in predicting the progression and outcome and the treatment of COVID-19.


Subject(s)
COVID-19 , Lipidomics , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/diagnosis , Male , Female , Middle Aged , Lipidomics/methods , Case-Control Studies , Adult , Aged , China , Lipids/blood , Biomarkers/blood , Triglycerides/blood
18.
Clin Transl Sci ; 17(5): e13828, 2024 May.
Article in English | MEDLINE | ID: mdl-38783568

ABSTRACT

As a treatment for relapsed or refractory multiple myeloma (MM), carfilzomib has been associated with a significant risk of cardiovascular adverse events (CVAE). The goals of our study were to evaluate the metabolomic profile of MM patients to identify those at high risk prior to carfilzomib treatment and to explore the mechanisms of carfilzomib-CVAE to inform potential strategies to protect patients from this cardiotoxicity. Global metabolomic profiling was performed on the baseline and post-baseline plasma samples of 60 MM patients treated with carfilzomib-based therapy, including 31 who experienced CVAE, in a prospective cohort study. Baseline metabolites and post-baseline/baseline metabolite ratios that differ between the CVAE and no-CVAE patients were identified using unadjusted and adjusted methods. A baseline metabolomic risk score was created to stratify patients. We observed a lower abundance of tauroursodeoxycholic acid (T-UDCA) in CVAE patients at baseline (odds ratio [OR] = 0.47, 95% confidence interval [CI] = 0.21-0.94, p = 0.044) compared with the no-CVAE patients. A metabolite risk score was able to stratify patients into three risk groups. The area under the receiver-operating curve of the model with clinical predictors and metabolite risk score was 0.93. Glycochenodeoxycholic acid (OR = 0.56, 95% CI = 0.31-0.87, p = 0.023) was significantly lower in post-baseline/baseline ratios of CVAE patients compared with no-CVAE patients. Following metabolomic analysis, we created a baseline metabolite risk score that can stratify MM patients into different risk groups. The result also provided intriguing clues about the mechanism of carfilzomib-CVAE and potential cardioprotective strategies.


Subject(s)
Cardiotoxicity , Metabolomics , Multiple Myeloma , Oligopeptides , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/blood , Oligopeptides/adverse effects , Male , Female , Aged , Middle Aged , Cardiotoxicity/etiology , Cardiotoxicity/blood , Cardiotoxicity/diagnosis , Metabolomics/methods , Prospective Studies , Metabolome/drug effects , Aged, 80 and over , Risk Factors
19.
Heliyon ; 10(9): e29987, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737278

ABSTRACT

Objective: The study analyzed the impact of urbanization on epidemiological characteristics of respiratory infectious disease in Tongzhou District, Beijing during 2014-2022 to provide reference for prevention and control priorities of respiratory infectious diseases during the innovative urbanization process in China. Methods: The incidence data of notifiable respiratory infectious diseases (NRIDs) in Tongzhou Beijing during 2014-2022 were summarized. The trend of incidence rate was analyzed by Joinpoint regression model, and entropy method was performed to construct the comprehensive index of urbanization (CIU) and generalized linear model was used to analyze the influence of CIU on the incidence rate of respiratory infectious diseases. Results: Totally 72616 NRIDs cases were reported in Tongzhou District during 2014-2022, and the incidence rate of NRIDs was higher during 2017-2019 (153/100 000) than during 2014-2016 (930/100 000) and during 2020-2022 (371/100 000), respectively (both P < 0.001). The CIU constantly increased with slight fluctuation in 2016 and 2018, respectively. The incidence rate of NRIDs showed an increase along with the CIU during 2014-2019 (r = 0.95, P = 0.004), while the incidence rate's tendency was interrupted by COVID-19 during 2020 with slight decrease in 2020-2021 and rebounded in 2022. For the patients aged <15 years, the incidence rate of NRIDs revealed a very sharp rise at the urbanization period without COVID-19 pandemic compared with that under pre-urbanization period (RR = 7.93, 95 % CI 7.63-8.24), and dropped off to the similar level as of pre-urbanization period when COVID-19 pandemic spread. Conclusions: Urbanization process may increase the incidence of NRIDs but constrained by COVID-19. Certain measures should be taken to prevent and control the effects by urbanization process, such as good natural environment with less population density, ecological environment with good air quality, promoted hand hygiene, mask wearing, keeping interpersonal distance, vaccination, media publicity for NRIDs' prevention and control.

20.
Sensors (Basel) ; 24(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732783

ABSTRACT

This paper addresses the problem of fault detection in DC microgrids in the presence of denial-of-service (DoS) attacks. To deal with the nonlinear term in DC microgrids, a Takagi-Sugeno (T-S) model is employed. In contrast to the conventional approach of utilizing current sampling data in the traditional event-triggered mechanism (ETM), a novel integrated ETM employs historical information from measured data. This innovative strategy mitigates the generation of additional triggering packets resulting from random perturbations, thus reducing redundant transmission data. Under the assumption of faults occurring within a finite-frequency domain, a resilient event-based H-/H∞ fault detection filter (FDF) is designed to withstand DoS attacks. The exponential stability conditions are derived in the form of linear matrix inequalities to ensure the performance of fault detected systems. Finally, the simulation results are presented, demonstrating that the designed FDF effectively detects finite-frequency faults in time even under DoS attacks. Furthermore, the FDF exhibits superior fault detection sensitivity compared to the conventional H∞ method, thus confirming the efficacy of the proposed approach. Additionally, it is observed that a trade-off exists between fault detection performance and the data releasing rate (DRR).

SELECTION OF CITATIONS
SEARCH DETAIL