Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 148: 93-104, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25773716

ABSTRACT

Potentiometric pH titrations and pD dependent (1)H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2Pt(II) (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A-Pt-A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head-head or head-tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)-Pt-(N7-A) and (A-N1)-Pt-(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca. 1.3 units (first pKa), than the linkage isomer trans-,trans-,trans-[Pt(CH3NH2)2(N1-9MeA-N7)2{Pt(NH3)2(9MeGH-N7)}2](NO3)6·6.25H2O (1b). Overall, acidifications in these types of complexes amount to 7-9 units, bringing the pKa values of such adenine ligands in the best case close to the physiological pH range. Comparison with pKa values of related trinuclear Pt(II) complexes having different co-ligands at the Pt ions, confirms this picture and supports our earlier proposal that the close proximity of the exocyclic amino groups in a head-head arrangement of (A-N7)-Pt-(N7-A), and the stabilization of the resulting N6H(-)⋯H2N6 unit, is key to this difference.


Subject(s)
Adenine/chemistry , Coordination Complexes/chemistry , Metals/chemistry , Purines/chemistry , Acids/chemistry , Alkalies/chemistry , Amines/chemistry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Models, Chemical , Molecular Structure , Nitrogen/chemistry , Organoplatinum Compounds/chemistry , Platinum/chemistry , Potentiometry
2.
Chemistry ; 10(4): 1046-57, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-14978832

ABSTRACT

The degree of acidification of the exocyclic N6 amino group of the model nucleobase 9-methyladenine (9MeA) in relation to the number and site(s) of Pt(II) binding has been studied in detail. It is found that twofold Pt(II) binding to N1 and N7 lowers the pK(a) value from 16.7 in the free base to 12-8. The lowest pK(a) values are observed when the resulting N6H(-) amide group is intramolecularly stabilized by an H-bond donor such as the N6H(2) group of a suitably positioned second 9MeA ligand. Deprotonation of the N6 amino group facilitates Pt migration from N1 to N6, and subsequent reprotonation of the N1 position yields a twofold N7,N6-metalated form of the rare imino tautomer of 9MeA, which has a pK(a) value of 5.03. These findings demonstrate a principle that is of potential relevance to the topic of "shifted pK(a)" values of adenine nucleobases, which is believed to be important with regard to acid-base catalysis of RNAs at physiological pH values. The principle states that a nucleobase pK(a) value can be sufficiently lowered to reach near-neutral values and that the pK(a) value of the protonated base does not necessarily have to be increased to accomplish this effect.

3.
Proc Natl Acad Sci U S A ; 100(7): 3748-53, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12651957

ABSTRACT

If two nucleobases are crosslinked by trans-a(2)Pt(II), self-association via H bonding may take place either through individual bases or jointly through both bases. Due to the blockage of an acceptor site by the metal, the number of feasible pairing patterns can be reduced, and the preferred ones altered. If the metalated base pair as a whole undergoes association, base quartets can form. Various scenarios resulting from the application of guanine, hypoxanthine, and cytosine model nucleobases are discussed. Unconventional CH em leader N hydrogen bonding has been observed in several instances.


Subject(s)
Base Pairing , Purines/chemistry , Pyrimidines/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Indicators and Reagents , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Purines/chemical synthesis , Pyrimidines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...