Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
J Autoimmun ; 144: 103181, 2024 04.
Article En | MEDLINE | ID: mdl-38522129

Inflammatory bowel diseases (IBDs) are chronic intestinal disorders often characterized by a dysregulation of T cells, specifically T helper (Th) 1, 17 and T regulatory (Treg) repertoire. Increasing evidence demonstrates that dietary polyphenols from Mangifera indica L. extract (MIE, commonly known as mango) mitigate intestinal inflammation and splenic Th17/Treg ratio. In this study, we aimed to dissect the immunomodulatory and anti-inflammatory properties of MIE using a reverse translational approach, by initially using blood from an adult IBD inception cohort and then investigating the mechanism of action in a preclinical model of T cell-driven colitis. Of clinical relevance, MIE modulates TNF-α and IL-17 levels in LPS spiked sera from IBD patients as an ex vivo model of intestinal barrier breakdown. Preclinically, therapeutic administration of MIE significantly reduced colitis severity, pathogenic T-cell intestinal infiltrate and intestinal pro-inflammatory mediators (IL-6, IL-17A, TNF-α, IL-2, IL-22). Moreover, MIE reversed colitis-induced gut permeability and restored tight junction functionality and intestinal metabolites. Mechanistic insights revealed MIE had direct effects on blood vascular endothelial cells, blocking TNF-α/IFN-γ-induced up-regulation of COX-2 and the DP2 receptors. Collectively, we demonstrate the therapeutic potential of MIE to reverse the immunological perturbance during the onset of colitis and dampen the systemic inflammatory response, paving the way for its clinical use as nutraceutical and/or functional food.


Colitis , Inflammatory Bowel Diseases , Mangifera , Adult , Humans , Animals , Tumor Necrosis Factor-alpha/metabolism , Endothelial Cells/metabolism , Intestinal Mucosa , Disease Models, Animal
2.
J Med Chem ; 67(3): 1812-1824, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38285632

Colorectal cancer (CRC) often involves wild-type p53 inactivation by MDM2 and MDM4 overexpression, promoting tumor progression and resistance to 5-fluoruracil (5-FU). Disrupting the MDM2/4 heterodimer can proficiently reactivate p53, sensitizing cancer cells to 5-FU. Herein, we developed 16 peptides based on Pep3 (1), the only known peptide acting through this mechanism. The new peptides, notably 3 and 9, showed lower IC50 values than 1. When incorporated into tumor-targeted biodegradable nanoparticles, these exhibited cytotoxicity against three different CRC cell lines. Notably, NPs/9 caused a significant increase in p53 levels associated with a strong increment of its main downstream target p21 inducing apoptosis. Also, the combined treatment of 9 with 5-FU caused the activation of nucleolar stress and a synergic apoptotic effect. Hence, the co-delivery of MDM2/4 heterodimer disruptors with 5-FU through nanoparticles might be a promising strategy to overcome drug resistance in CRC.


Antineoplastic Agents , Colorectal Neoplasms , Nanoparticles , Humans , Fluorouracil/pharmacology , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Peptides/pharmacology , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins/metabolism , Cell Cycle Proteins/metabolism
3.
Arch Pharm (Weinheim) ; 357(3): e2300583, 2024 Mar.
Article En | MEDLINE | ID: mdl-38110703

Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.


Biphenyl Compounds , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , B7-H1 Antigen , Ligands , Structure-Activity Relationship , Benzimidazoles/pharmacology , Water
4.
Comput Struct Biotechnol J ; 21: 3355-3368, 2023.
Article En | MEDLINE | ID: mdl-37384351

Today it is widely recognized that the PD-1/PD-L1 axis plays a fundamental role in escaping the immune system in cancers, so that anti-PD-1/PD-L1 antibodies have been evaluated for their antitumor properties in more than 1000 clinical trials. As a result, some of them have entered the market revolutionizing the treatment landscape of specific cancer types. Nonetheless, a new era based on the development of small molecules as anti PD-L1 drugs has begun. There are, however, some limitations to advancing these compounds into clinical stages including the possible difficulty in counteracting the PD-1/PD-L1 interaction in vivo, the discrepancy between the in vitro IC50 (HTFR assay) and cellular EC50 (immune checkpoint blockade co-culture assay), and the differences in ligands' affinity between human and murine PD-L1, which can affect their preclinical evaluation. Here, an extensive theoretical study, assisted by MicroScale Thermophoresis binding assays and NMR experiments, was performed to provide an atomistic picture of the binding event of three representative biphenyl-based compounds in both human and murine PD-L1. Structural determinants of the species' specificity were unraveled, providing unprecedented details useful for the design of next generation anti-PD-L1 molecules.

5.
Dis Model Mech ; 16(3)2023 03 01.
Article En | MEDLINE | ID: mdl-36912171

Lipopolysaccharide (LPS) exposure to macrophages induces an inflammatory response, which is regulated at the transcriptional and post-transcriptional levels. HuR (ELAVL1) is an RNA-binding protein that regulates cytokines and chemokines transcripts containing AU/U-rich elements (AREs) and mediates the LPS-induced response. Here, we show that small-molecule tanshinone mimics (TMs) inhibiting HuR-RNA interaction counteract LPS stimulus in macrophages. TMs exist in solution in keto-enolic tautomerism, and molecular dynamic calculations showed the ortho-quinone form inhibiting binding of HuR to mRNA targets. TM activity was lost in vitro by blocking the diphenolic reduced form as a diacetate, but resulted in prodrug-like activity in vivo. RNA and ribonucleoprotein immunoprecipitation sequencing revealed that LPS induces a strong coupling between differentially expressed genes and HuR-bound genes, and TMs reduced such interactions. TMs decreased the association of HuR with genes involved in chemotaxis and immune response, including Cxcl10, Il1b and Cd40, reducing their expression and protein secretion in primary murine bone marrow-derived macrophages and in an LPS-induced peritonitis model. Overall, TMs show anti-inflammatory properties in vivo and suggest HuR as a potential therapeutic target for inflammation-related diseases.


ELAV-Like Protein 1 , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , Macrophages/metabolism , RNA/metabolism , RNA, Messenger/genetics
6.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 26.
Article En | MEDLINE | ID: mdl-36355491

Intracellular pathogens, such as Chlamydia trachomatis, have been recently shown to induce degradation of p53 during infection, thus impairing the protective response of the host cells. Therefore, p53 reactivation by disruption of the p53-MDM2 complex could reduce infection and restore pro-apoptotic effect of p53. Here, we report the identification of a novel MDM2 inhibitor with potential antitumoural and antibacterial activity able to reactivate p53. A virtual screening was performed on an in-house chemical library, previously synthesised for other targets, and led to the identification of a hit compound with a benzo[a]dihydrocarbazole structure, RM37. This compound induced p53 up-regulation in U343MG glioblastoma cells by blocking MDM2-p53 interaction and reduced tumour cell growth. NMR studies confirmed its ability to dissociate the MDM2-p53 complex. Notably, RM37 reduced Chlamydia infection in HeLa cells in a concentration-dependent manner and ameliorated the inflammatory status associated with infection.

7.
Adv Drug Deliv Rev ; 181: 114088, 2022 02.
Article En | MEDLINE | ID: mdl-34942276

The Human antigen R (HuR) protein is an RNA-binding protein, ubiquitously expressed in human tissues, that orchestrates target RNA maturation and processing both in the nucleus and in the cytoplasm. A survey of known modulators of the RNA-HuR interactions is followed by a description of its structure and molecular mechanism of action - RRM domains, interactions with RNA, dimerization, binding modes with naturally occurring and synthetic HuR inhibitors. Then, the review focuses on HuR as a validated molecular target in oncology and briefly describes its role in inflammation. Namely, we show ample evidence for the involvement of HuR in the hallmarks and enabling characteristics of cancer, reporting findings from in vitro and in vivo studies; and we provide abundant experimental proofs of a beneficial role for the inhibition of HuR-mRNA interactions through silencing (CRISPR, siRNA) or pharmacological inhibition (small molecule HuR inhibitors).


ELAV-Like Protein 1/antagonists & inhibitors , ELAV-Like Protein 1/metabolism , Neoplasms/physiopathology , RNA/metabolism , RNA/pharmacology , Animals , Drug Delivery Systems/methods , Gene Silencing , Humans , Inflammation Mediators/metabolism , Molecular Weight , Neoplasms/drug therapy , RNA, Messenger/pharmacology , RNA, Small Interfering/pharmacology
8.
Molecules ; 26(24)2021 Dec 11.
Article En | MEDLINE | ID: mdl-34946600

Molecule interacting with CasL 2 (MICAL2), a cytoskeleton dynamics regulator, are strongly expressed in several human cancer types, especially at the invasive front, in metastasizing cancer cells and in the neo-angiogenic vasculature. Although a plethora of data exist and stress a growing relevance of MICAL2 to human cancer, it is worth noting that only one small-molecule inhibitor, named CCG-1423 (1), is known to date. Herein, with the aim to develop novel MICAL2 inhibitors, starting from CCG-1423 (1), a small library of new compounds was synthetized and biologically evaluated on human dermal microvascular endothelial cells (HMEC-1) and on renal cell adenocarcinoma (786-O) cells. Among the novel compounds, 10 and 7 gave interesting results in terms of reduction in cell proliferation and/or motility, whereas no effects were observed in MICAL2-knocked down cells. Aside from the interesting biological activities, this work provides the first structure-activity relationships (SARs) of CCG-1423 (1), thus providing precious information for the discovery of new MICAL2 inhibitors.


Anilides , Benzamides , Enzyme Inhibitors , Microfilament Proteins , Oxidoreductases , Small Molecule Libraries , Humans , Anilides/chemistry , Anilides/pharmacology , Benzamides/chemistry , Benzamides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Microfilament Proteins/antagonists & inhibitors , Microfilament Proteins/metabolism , Molecular Structure , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
9.
J Med Chem ; 64(21): 16020-16045, 2021 11 11.
Article En | MEDLINE | ID: mdl-34670084

The inhibition of the PD-1/PD-L1 axis by monoclonal antibodies has achieved remarkable success in treating a growing number of cancers. However, a novel class of small organic molecules, with BMS-202 (1) as the lead, is emerging as direct PD-L1 inhibitors. Herein, we report a series of 2,4,6-tri- and 2,4-disubstituted 1,3,5-triazines, which were synthesized and assayed for their PD-L1 binding by NMR and homogeneous time-resolved fluorescence. Among them, compound 10 demonstrated to strongly bind with the PD-L1 protein and challenged it in a co-culture of PD-L1 expressing cancer cells (PC9 and HCC827 cells) and peripheral blood mononuclear cells enhanced antitumor immune activity of the latter. Compound 10 significantly increased interferon γ release and apoptotic induction of cancer cells, with low cytotoxicity in healthy cells when compared to 1, thus paving the way for subsequent preclinical optimization and medical applications.


B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/immunology , Neoplasms/pathology , Small Molecule Libraries/pharmacology , Triazines/pharmacology , Calorimetry, Differential Scanning , Cell Line, Tumor , Coculture Techniques , Humans , Immune Checkpoint Inhibitors/chemistry , Models, Molecular , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Triazines/chemistry
10.
Eur J Pharmacol ; 897: 173936, 2021 Apr 15.
Article En | MEDLINE | ID: mdl-33581134

Glioblastoma Multiforme (GBM) is a highly invasive primary brain tumour characterized by chemo- and radio-resistance and poor overall survival. GBM can present an aberrant functionality of p53, caused by the overexpression of the murine double minute 2 protein (MDM2) and its analogue MDM4, which may influence the response to conventional therapies. Moreover, tumour resistance/invasiveness has been recently attributed to an overexpression of the chemokine receptor CXCR4, identified as a pivotal mediator of glioma neovascularization. Notably, CXCR4 and MDM2-4 cooperate in promoting tumour invasion and progression. Although CXCR4 actively promotes MDM2 activation leading to p53 inactivation, MDM2-4 knockdown induces the downregulation of CXCR4 gene transcription. Our study aimed to assess if the CXCR4 signal blockade could enhance glioma cells' sensitivity to the inhibition of the p53-MDMs axis. Rationally designed inhibitors of MDM2/4 were combined with the CXCR4 antagonist, AMD3100, in human GBM cells and GBM stem-like cells (neurospheres), which are crucial for tumour recurrence and chemotherapy resistance. The dual MDM2/4 inhibitor RS3594 and the CXCR4 antagonist AMD3100 reduced GBM cell invasiveness and migration in single-agent treatment and mainly in combination. AMD3100 sensitized GBM cells to the antiproliferative activity of RS3594. It is noteworthy that these two compounds present synergic effects on cancer stem components: RS3594 inhibited the growth and formation of neurospheres, AMD3100 induced differentiation of neurospheres while enhancing RS3594 effectiveness preventing their proliferation/clonogenicity. These results confirm that blocking CXCR4/MDM2/4 represents a valuable strategy to reduce GBM proliferation and invasiveness, acting on the stem cell component too.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzylamines/pharmacology , Brain Neoplasms/drug therapy , Cell Cycle Proteins/antagonists & inhibitors , Cyclams/pharmacology , Glioblastoma/drug therapy , Indoles/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Receptors, CXCR4/antagonists & inhibitors , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Synergism , Glioblastoma/enzymology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplasm Invasiveness , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Neurogenesis/drug effects , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Receptors, CXCR4/metabolism , Signal Transduction , Spheroids, Cellular , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
11.
Eur J Med Chem ; 188: 112006, 2020 Feb 15.
Article En | MEDLINE | ID: mdl-31931337

Although triiodothyronine (T3) induces several beneficial effects on lipid metabolism, its use is hampered by toxic side-effects, such as tachycardia, arrhythmia, heart failure, bone and muscle catabolism and mood disturbances. Since the α isoform of thyroid hormone receptors (TRs) is the main cause of T3-related harmful effects, several efforts have been made to develop selective agonists of the ß isoform that could induce some beneficial effects (i.e. lowering triglyceride and cholesterol levels reducing obesity and improving metabolic syndrome), while overcoming most of the adverse T3-dependent side effects. Herein, we describe the drug discovery process sustained by ADME-Toxicity analysis that led us to identify novel agonists with selectivity for the isoform TRß and an acceptable off-target and absorption, distribution metabolism, excretion and toxicity (ADME-Tox) profile. Within the small series of compounds synthesized, derivatives 1 and 3, emerge from this analysis as "potentially safe" to be engaged in preclinical studies. In in vitro investigation proved that both compounds were able to reduce lipid accumulation in HepG2 and promote lipolysis with comparable effects to those elicited by T3, used as reference drug. Moreover, a preliminary in vivo study confirmed the apparent lack of toxicity, thus suggesting compounds 1 and 3 as new potential TRß-selective thyromimetics.


Drug Design , Pyridazines/pharmacology , Thyroid Hormone Receptors beta/agonists , Uracil/analogs & derivatives , Animals , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Male , Molecular Structure , Pyridazines/chemical synthesis , Pyridazines/chemistry , Rats , Rats, Inbred F344 , Structure-Activity Relationship , Uracil/chemical synthesis , Uracil/chemistry , Uracil/pharmacology
13.
ACS Med Chem Lett ; 10(4): 469-474, 2019 Apr 11.
Article En | MEDLINE | ID: mdl-30996781

Several evidence pointed out the role of epigenetics in Alzheimer's disease (AD) revealing strictly relationships between epigenetic and "classical" AD targets. Based on the reported connection among histone deacetylases (HDACs) and glycogen synthase kinase 3ß (GSK-3ß), herein we present the discovery and the biochemical characterization of the first-in-class hit compound able to exert promising anti-AD effects by modulating the targeted proteins in the low micromolar range of concentration. Compound 11 induces an increase in histone acetylation and a reduction of tau phosphorylation. It is nontoxic and protective against H2O2 and 6-OHDA stimuli in SH-SY5Y and in CGN cell lines, respectively. Moreover, it promotes neurogenesis and displays immunomodulatory effects. Compound 11 shows no lethality in a wt-zebrafish model (<100 µM) and high water solubility.

14.
Biochim Biophys Acta Mol Cell Res ; 1866(5): 737-749, 2019 05.
Article En | MEDLINE | ID: mdl-30703414

The osteoblast generation from Mesenchymal stem cells (MSCs) is tightly coordinated by transcriptional networks and signalling pathways that control gene expression and protein stability of osteogenic "master transcription factors". Among these pathways, a great attention has been focused on p53 and its physiological negative regulator, the E3 ligase Murine double minute 2 (Mdm2). Nevertheless, the signalling that regulates Mdm2-p53 axis in osteoblasts remain to be elucidated, also considering that Mdm2 possesses numerous p53-independent activities and interacts with additional proteins. Herein, the effects of Mdm2 modulation on MSC differentiation were examined by the use of short- and long-lasting inhibitors of the Mdm2-p53 complex. The long-lasting Mdm2-p53 dissociation was demonstrated to enhance the MSC differentiation into osteoblasts. The increase of Mdm2 levels promoted its association to G protein-coupled receptors kinase (GRK) 2, one of the most relevant kinases involved in the desensitization of G protein-coupled receptors (GPCRs). In turn, the long-lasting Mdm2-p53 dissociation decreased GRK2 levels and favoured the functionality of A2B Adenosine Receptors (A2BARs), a GPCR dictating MSC fate. EB148 facilitated cAMP accumulation, and mediated a sustained activation of extracellular signal-regulated kinases (ERKs) and cAMP response element-binding protein (CREB). Such pro-osteogenic effects were not detectable by using the reversible Mdm2-p53 complex inhibitor, suggesting the time course of Mdm2-p53 dissociation may impact on intracellular proteins involved in cell differentiation fate. These results suggest that the long-lasting Mdm2 binding plays a key role in the mobilization of intracellular proteins that regulate the final biological outcome of MSCs.


Cell Differentiation/drug effects , Dipeptides/pharmacology , Indoles/pharmacology , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Humans , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Protein Binding/drug effects , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Receptor, Adenosine A2B/metabolism
15.
Eur J Med Chem ; 165: 46-58, 2019 Mar 01.
Article En | MEDLINE | ID: mdl-30660826

New benzothiopyranoindoles (5a-l) and pyridothiopyranoindoles (5m-t), featuring different combinations of substituents (H, Cl, OCH3) at R2-R4 positions and protonatable R1-dialkylaminoalkyl chains, were synthesized and biologically assayed on three human tumor cell lines, showing significant antiproliferative activity (GI50 values spanning from 0.31 to 6.93 µM) and pro-apoptotic effect. Linear flow dichroism experiments indicate the ability of both chromophores to form a molecular complex with DNA, following an intercalative mode of binding. All compounds displayed a moderate ability to inhibit the relaxation activity of both topoisomerases I and II, reasonably correlated to their intercalative capacities. Cleavable assay performed with topoisomerase I revealed a significant poisoning effect for compounds 5g, 5h, 5s, and 5t. A theoretical model provided by hydrated docking calculations clarified the role of the R1-R4 substituents on the topoisomerase I poison activity, revealing a crucial role of the R2-OCH3 group.


Antineoplastic Agents/chemical synthesis , Indoles/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase II Inhibitors/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/metabolism , Humans , Indoles/chemical synthesis , Indoles/chemistry , Indoles/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis
16.
J Med Chem ; 61(11): 4791-4809, 2018 06 14.
Article En | MEDLINE | ID: mdl-29775303

In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5ß1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein, we present the discovery of compound 7, which inhibits both MDM2/4 and α5ß1/αvß3 integrins. A lead optimization campaign was carried out on 7 with the aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4 and α5ß1/αvß3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5ß1 integrin.


Glioblastoma/drug therapy , Glioblastoma/metabolism , Integrin alpha5beta1/metabolism , Integrin alphaVbeta3/metabolism , Molecular Targeted Therapy/methods , Oligopeptides/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Animals , Cell Line, Tumor , Integrin alpha5beta1/antagonists & inhibitors , Integrin alphaVbeta3/antagonists & inhibitors , Mice , Models, Molecular , Peptidomimetics/pharmacology , Protein Conformation , Proto-Oncogene Proteins c-mdm2/chemistry
17.
Eur J Med Chem ; 150: 491-505, 2018 Apr 25.
Article En | MEDLINE | ID: mdl-29549836

It is now known that "gain of function" mutations of RET (REarranged during Transfection) kinase are specific and key oncogenic events in the onset of thyroid gland cancers such as the Medullary Thyroid Carcinoma (MTC). Although a number of RET inhibitors exist and are capable of inhibiting RET variants, in which mutations are outside the enzyme active site, the majority becomes dramatically ineffective when mutations are within the protein active site (V804L and V804M). Pursuing a receptor-based virtual screening against the kinase domain of RET, we found that compound 5 is able to inhibit efficiently both wild type and V804L mutant RET. Compound 5 was able to significantly reduce proliferation of both commercially available TT cell lines and surgical thyroid tissues obtained from patients with MTC and displayed a suitable drug-like profile, thus standing out as a promising candidate for further development towards the treatment of clinically unresponsive MTC.


Antineoplastic Agents/pharmacology , Carcinoma, Neuroendocrine/drug therapy , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Thyroid Gland/drug effects , Thyroid Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Neuroendocrine/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Structure-Activity Relationship , Thyroid Gland/metabolism , Thyroid Gland/pathology , Thyroid Neoplasms/metabolism
18.
ACS Chem Neurosci ; 9(1): 85-99, 2018 01 17.
Article En | MEDLINE | ID: mdl-28368610

Glioblastoma (GBM) is characterized by a poor response to conventional chemotherapeutic agents, attributed to the insurgence of drug resistance mechanisms and to the presence of a subpopulation of glioma stem cells (GSCs). GBM cells and GSCs present, among others, an overexpression of antiapoptotic proteins and an inhibition of pro-apoptotic ones, which help to escape apoptosis. Among pro-apoptotic inducers, the Bcl-2 family protein Bax has recently emerged as a promising new target in cancer therapy along with first BAX activators (BAM7, Compound 106, and SMBA1). Herein, a derivative of BAM-7, named BTC-8, was employed to explore the effects of Bax activation in different human GBM cells and in their stem cell subpopulation. BTC-8 inhibited GBM cell proliferation, arrested the cell cycle, and induced apoptosis through the induction of mitochondrial membrane permeabilization. Most importantly, BTC-8 blocked proliferation and self-renewal of GSCs and induced their apoptosis. Notably, BTC-8 was demonstrated to sensitize both GBM cells and GSCs to the alkylating agent Temozolomide. Overall, our findings shed light on the effects and the relative molecular mechanisms related to Bax activation in GBM, and they suggest Bax-targeting compounds as promising therapeutic tools against the GSC reservoir.


Antineoplastic Agents/pharmacology , Central Nervous System Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplastic Stem Cells/drug effects , bcl-2-Associated X Protein/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Caspase 3/metabolism , Caspase 7/metabolism , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Drug Therapy, Combination , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Hydrazones/pharmacology , Membrane Potential, Mitochondrial/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Pyrazoles/pharmacology , Temozolomide
19.
J Med Chem ; 60(19): 8115-8130, 2017 10 12.
Article En | MEDLINE | ID: mdl-28921985

The function of p53 protein, also known as "genome guardian", might be impaired by the overexpression of its primary cellular inhibitor, the murine double minute 2 protein (MDM2). However, the recent finding that MDM2-selective inhibitors induce high levels of its homologue MDM4, prompt us to identify, through a receptor-based virtual screening on an in house database, dual MDM2/MDM4 binders. Compound 1 turned out to possess an IC50 of 93.7 and of 4.6 nM on MDM2 and MDM4, respectively. A series of compounds were synthesized to optimize its activity on MDM2. As a result, compound 12 showed low nanomolar IC50 for both targets. NMR studies confirmed the pocket of binding of 12 as predicted by the Glide docking software. Notably, 12 was able to cause concentration-dependent inhibition of cell proliferation, yielding an IC50 value of 356 ± 21 nM in neuroblastoma SHSY5Y cells and proved even to efficiently block cancer stem cell growth.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Computer-Aided Design , Drug Design , Genes, p53 , High-Throughput Screening Assays , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Neoplastic Stem Cells , Proto-Oncogene Proteins/drug effects , Proto-Oncogene Proteins c-mdm2/drug effects , Structure-Activity Relationship
20.
J Med Chem ; 59(18): 8369-80, 2016 Sep 22.
Article En | MEDLINE | ID: mdl-27571038

We previously reported the discovery of a CXCL12-mimetic cyclic peptide (2) as a selective CXCR4 antagonist showing promising in vitro and in vivo anticancer activity. However, further development of this peptide was hampered by its degradation in biological fluids as well as by its low micromolar affinity for the receptor. Herein, extensive chemical modifications led to the development of a new analogue (10) with enhanced potency, specificity, and plasma stability. A combined approach of Ala-amino acid scan, NMR, and molecular modeling unraveled the reasons behind the improved binding properties of 10 vs 2. Biological investigations on leukemia (CEM) and colon (HT29 and HCT116) cancer cell lines showed that 10 is able to impair CXCL12-mediated cell migration, ERK-phosphorylation, and CXCR4 internalization. These outcomes might pave the way for the future preclinical development of 10 in CXCR4 overexpressing leukemia and colon cancer.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chemokine CXCL12/chemistry , Chemokine CXCL12/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Receptors, CXCR4/antagonists & inhibitors , Amino Acid Sequence , Cell Line, Tumor , Cell Movement/drug effects , Colonic Neoplasms/drug therapy , Humans , Leukemia/drug therapy , Models, Molecular , Phosphorylation/drug effects
...