Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Plant Physiol Biochem ; 207: 108324, 2024 Feb.
Article En | MEDLINE | ID: mdl-38183903

Three genes encoding mitochondrial uncoupling proteins (UCPs) have been described in Arabidopsis thaliana (UCP1 to UCP3). In plants, UCPs may act as an uncoupler or as an aspartate/glutamate exchanger. For instance, much of the data regarding UCP functionality were obtained for the UCP1 and UCP2 isoforms compared with UCP3. Here, to get a better understanding about the concerted action of UCP1 and UCP3 in planta, we investigated the transcriptome and metabolome profiles of ucp1 ucp3 double mutant plants during the vegetative phase. For that, 21-day-old mutant plants, which displayed the most evident phenotypic alterations compared to wild type (WT) plants, were employed. The double knockdown of UCP1 and UCP3, isoforms unequivocally present inside the mitochondria, promoted important transcriptional reprogramming with alterations in the expression of genes related to mitochondrial and chloroplast function as well as those responsive to abiotic stress, suggesting disturbances throughout the cell. The observed transcriptional changes were well integrated with the metabolomic data of ucp1 ucp3 plants. Alterations in metabolites related to primary and secondary metabolism, particularly enriched in the Alanine, Aspartate and Glutamate metabolism, were detected. These findings extend our knowledge of the underlying roles played by UCP3 in concert with UCP1 at the whole plant level.


Arabidopsis , Adipose Tissue, Brown/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Aspartic Acid , Glutamates/metabolism , Ion Channels/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Isoforms/metabolism , Uncoupling Protein 1/metabolism , Uncoupling Protein 3/metabolism
2.
Front Plant Sci ; 12: 716964, 2021.
Article En | MEDLINE | ID: mdl-34659289

Sugarcane is an economically important crop contributing to the sugar and ethanol production of the world with 80 and 40%, respectively. Despite its importance as the main crop for sugar production, the mechanisms involved in the regulation of sucrose accumulation in sugarcane culms are still poorly understood. The aim of this work was to compare the quantitative changes of proteins in juvenile and maturing internodes at three stages of plant development. Label-free shotgun proteomics was used for protein profiling and quantification in internodes 5 (I5) and 9 (I9) of 4-, 7-, and 10-month-old-plants (4M, 7M, and 10M, respectively). The I9/I5 ratio was used to assess the differences in the abundance of common proteins at each stage of internode development. I9 of 4M plants showed statistically significant increases in the abundance of several enzymes of the glycolytic pathway and proteoforms of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC). The changes in content of the enzymes were followed by major increases of proteins related to O2 transport like hemoglobin 2, ROS scavenging enzymes, and enzymes involved in the ascorbate/glutatione system. Besides, intermediates from tricarboxylic acid cycle (TCA) were reduced in I9-4M, indicating that the increase in abundance of several enzymes involved in glycolysis, pentose phosphate cycle, and TCA, might be responsible for higher metabolic flux, reducing its metabolites content. The results observed in I9-4M indicate that hypoxia might be the main cause of the increased flux of glycolysis and ethanolic fermentation to supply ATP and reducing power for plant growth, mitigating the reduction in mitochondrial respiration due to the low oxygen availability inside the culm. As the plant matured and sucrose accumulated to high levels in the culms, the proteins involved in glycolysis, ethanolic fermentation, and primary carbon metabolism were significantly reduced.

3.
Front Plant Sci ; 11: 604849, 2020.
Article En | MEDLINE | ID: mdl-33488655

Eucalyptus rust is caused by the biotrophic fungus, Austropuccinia psidii, which affects commercial plantations of Eucalyptus, a major raw material for the pulp and paper industry in Brazil. In this manuscript we aimed to uncover the molecular mechanisms involved in rust resistance and susceptibility in Eucalyptus grandis. Epifluorescence microscopy was used to follow the fungus development inside the leaves of two contrasting half-sibling genotypes (rust-resistance and rust-susceptible), and also determine the comparative time-course of changes in metabolites and proteins in plants inoculated with rust. Within 24 h of complete fungal invasion, the analysis of 709 metabolomic features showed the suppression of many metabolites 6 h after inoculation (hai) in the rust-resistant genotype, with responses being induced after 12 hai. In contrast, the rust-susceptible genotype displayed more induced metabolites from 0 to 18 hai time-points, but a strong suppression occurred at 24 hai. Multivariate analyses of genotypes and time points were used to select 16 differential metabolites mostly classified as phenylpropanoid-related compounds. Applying the Weighted Gene Co-Expression Network Analysis (WGCNA), rust-resistant and rust-susceptible genotypes had, respectively, 871 and 852 proteins grouped into 5 and 6 modules, of which 5 and 4 of them were significantly correlated to the selected metabolites. Functional analyses revealed roles for photosynthesis and oxidative-dependent responses leading to temporal activity of metabolites and related enzymes after 12 hai in rust-resistance; while the initial over-accumulation of those molecules and suppression of supporting mechanisms at 12 hai caused a lack of progressive metabolite-enzyme responses after 12 hai in rust-susceptible genotype. This study provides some insights on how E. grandis plants are functionally modulated to integrate secondary metabolites and related enzymes from phenylpropanoid pathway and lead to temporal divergences of resistance and susceptibility responses to rust.

4.
Biomark Med ; 10(12): 1225-1229, 2016 Dec.
Article En | MEDLINE | ID: mdl-27911590

AIM: Sepsis is a critical condition that leads to high mortality and is the most common cause of death in intensive care units. Despite exhaustive efforts by the scientific community, a reliable biomarker for diagnosis, evolution and prognosis of sepsis is still lacking. Results & methodology: Here, using high-throughput proteomics, we describe N-acetylmuramoyl-l-alanine amidase as a novel candidate for differentiating infectious and noninfectious inflammatory syndromes. DISCUSSION & CONCLUSION: This is the first description of N-acetylmuramoyl-l-alanine amidase as a biomarker that can be used alone or in conjunction with other biomarkers to facilitate the diagnosis of sepsis in the critically ill.


Biomarkers/blood , N-Acetylmuramoyl-L-alanine Amidase/blood , Proteomics , Sepsis/diagnosis , C-Reactive Protein/analysis , Case-Control Studies , Chromatography, High Pressure Liquid , Deuterium Exchange Measurement , Humans , Intensive Care Units , Mass Spectrometry , Sepsis/pathology
5.
PLoS One ; 11(1): e0145343, 2016.
Article En | MEDLINE | ID: mdl-26731728

Puccinia psidii sensu lato (s.l.) is the causal agent of eucalyptus and guava rust, but it also attacks a wide range of plant species from the myrtle family, resulting in a significant genetic and physiological variability among populations accessed from different hosts. The uredospores are crucial to P. psidii dissemination in the field. Although they are important for the fungal pathogenesis, their molecular characterization has been poorly studied. In this work, we report the first in-depth proteomic analysis of P. psidii s.l. uredospores from two contrasting populations: guava fruits (PpGuava) and eucalyptus leaves (PpEucalyptus). NanoUPLC-MSE was used to generate peptide spectra that were matched to the UniProt Puccinia genera sequences (UniProt database) resulting in the first proteomic analysis of the phytopathogenic fungus P. psidii. Three hundred and fourty proteins were detected and quantified using Label free proteomics. A significant number of unique proteins were found for each sample, others were significantly more or less abundant, according to the fungal populations. In PpGuava population, many proteins correlated with fungal virulence, such as malate dehydrogenase, proteossomes subunits, enolases and others were increased. On the other hand, PpEucalyptus proteins involved in biogenesis, protein folding and translocation were increased, supporting the physiological variability of the fungal populations according to their protein reservoirs and specific host interaction strategies.


Basidiomycota/metabolism , Basidiomycota/pathogenicity , Eucalyptus/microbiology , Proteomics/methods , Psidium/microbiology , Spores, Fungal/metabolism , Basidiomycota/classification , Chromatography, Liquid/methods , Fungal Proteins/classification , Fungal Proteins/metabolism , Host Specificity , Mass Spectrometry/methods , Plant Diseases/microbiology , Plant Leaves/microbiology , Proteome/classification , Proteome/metabolism , Species Specificity , Virulence
6.
J Agric Food Chem ; 64(7): 1635-47, 2016 Feb 24.
Article En | MEDLINE | ID: mdl-26809209

Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.


Coffea/chemistry , Plant Proteins/metabolism , Seeds/growth & development , Coffea/growth & development , Coffea/metabolism , Coffee/chemistry , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Plant Proteins/chemistry , Proteomics , Seeds/chemistry , Seeds/metabolism
7.
BMC Microbiol ; 14: 302, 2014 Dec 13.
Article En | MEDLINE | ID: mdl-25609357

BACKGROUND: Paracoccidioides spp is a fungi genus and the agent of paracoccidioidomycosis. The strategies of infection used by these pathogens involve the expression of proteins related to adaptation to the host, particularly regarding the uptake of micronutrients. This study analyzed the adhesion of Paracoccidioides lutzii during conditions of copper (Cu) and iron (Fe) deprivation, while also evaluating the proteins expressed in conditions of Cu depletion in the presence of four extracellular matrix (ECM) components (laminin, fibronectin and types I and IV collagen). RESULTS: We cultured the P. lutzii in a chemically defined media without Cu and Fe. The fungus was then placed in contact with different ECM components and adhesion was evaluated. A significant increase in binding to all ECM components was observed when the fungus was cultured without Cu; which might be related to some adhesins expression. A proteomic assay was developed and revealed 39 proteins expressed that are involved in processes such as virulence, protein synthesis, metabolism, energy, transcription, transport, stress response and the cell cycle when the fungus was interacting with the ECM components. The up-regulated expression of two important adhesins, enolase and 14-3-3, was observed at the fungal cell wall during the interaction with the ECM components, indicating the role of these proteins in the Paracoccidioides-host interaction. CONCLUSIONS: This study is important for determining prospective proteins that may be involved in the interaction of Paracoccidioides with a host. Understanding the adaptive response to different growth conditions, elucidating the processes of adhesion and cell invasion, and identifying the proteins that are differentially expressed during the fungus-host interaction may help elucidate mechanisms used for survival and growth of Paracoccidioides in various human tissues.


Cell Adhesion , Copper/metabolism , Extracellular Matrix Proteins/metabolism , Gene Expression/drug effects , Paracoccidioides/physiology , Animals , Culture Media/chemistry , Fungal Proteins/analysis , Iron/metabolism , Paracoccidioides/genetics , Paracoccidioides/growth & development , Paracoccidioides/metabolism , Proteome/analysis , Rabbits
...