Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 47(27): 9143-9155, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29946586

ABSTRACT

A facile and eco-friendly method was developed to prepare a microporous CuO@Ag0 core-shell with high catalytic and antibacterial activities. Scanning and transmission electron microscopy revealed a preponderance of nearly spherical 50 nm particles with slight structure compaction. Comparison of the hysteresis loops confirmed the structure compaction after AgNP incorporation, and a significant decrease of the specific surface area from 55.31 m2 g-1 for CuO to 8.03 m2 g-1 for CuO@Ag0 was noticed. A kinetic study of 4-nitrophenol (4-NP) reduction into 4-aminophenol (4-AP) with sodium borohydride revealed a first order reaction that produces total conversion in less than 18 minutes. CuO@Ag0 also exhibited appreciable antibacterial activity against Staphylococcus aureus. The antibacterial effects were found to strongly depend on the size, contact surface, morphology and chemical composition of the catalyst particles. The addition of Ag0-NPs produced more reactive oxygen species in the bacteria medium. These results open promising prospects for its potential applications as a low cost catalyst in wastewater treatment and antibacterial agent in cosmetics.

2.
Acta Biomater ; 8(9): 3419-28, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22683877

ABSTRACT

Carboxylated, sulfated and/or phosphorylated surfaces are admitted as potential optimal templates for biomimetic deposition of calcium phosphate (CaP) coatings in view of improving implants' osseointegration. Layer-by-layer films were built up consisting of anionic chondroitin sulfate (ChS), a biological carboxylated and sulfated polysaccharide and cationic poly(l-lysine) (PLL). The films were used as soft matrices to immobilize a model phosphoprotein, phosvitin (PhV). The respective roles of ChS, PLL and PhV terminal layers on the heterogeneous nucleation kinetics and the structure of CaP deposits obtained from supersaturated solutions were inspected. Critical supersaturation ratios and induction times preceding heterogeneous nucleation were precisely determined and interpreted within the framework of classical nucleation theory in order to derive the effective interfacial energies of CaP crystals. It was found that the potency of terminal layers toward CaP nucleation increased in the order: PLL

Subject(s)
Biomimetics , Calcification, Physiologic , Calcium Phosphates/chemistry , Kinetics , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spectrum Analysis, Raman , Tissue Engineering
3.
Biomacromolecules ; 1(4): 674-87, 2000.
Article in English | MEDLINE | ID: mdl-11710198

ABSTRACT

The interactions between polystyrenesulfonate (PSS)/polyallylamine (PAH) multilayers with human serum albumin (HSA) were investigated by means of scanning angle reflectometry (SAR). We find that albumin adsorbs both on multilayers terminating with PSS (negatively charged) or PAH (positively charged) polyelectrolytes. On films terminating with PSS only, an albumin equivalent monolayer is found whereas when PAH constitutes the outer layer, albumin interacts with the multilayer in such a way as to form a protein film that extends over thicknesses that can be as high as four times the largest dimension of the native albumin molecule. Once the protein film is formed, it is found that when the albumin solution is replaced by a pure buffer solution of same ionic strength as the adsorption solution almost no desorption takes place. On the other hand, when a buffer solution of higher ionic strength is brought in contact with the albumin film, a significant amount of adsorbed proteins is released. One also observes that, for albumin solutions of a given protein concentration, the adsorbed protein amount depends on the ionic strength of the adsorption solution. On surfaces terminating with PAH, the adsorbed protein amount first increases rapidly but passes through a maximum and decreases with the ionic strength. The ionic strength corresponding to the maximum of the adsorbed albumin amount itself depends on the albumin concentration. On the other hand, on films terminating with PSS the adsorbed amount increases with the salt concentration before leveling-off. These results show that the underlying complexity of concentration and pH dependent adsorption/desorption equilibria often simply termed "protein adsorption" is the result of antagonist competing interactions that are mainly of electrostatic origin. We also propose two microscopic models, that are compatible with our experimental observations.


Subject(s)
Polyamines/chemistry , Polystyrenes/chemistry , Serum Albumin/chemistry , Adsorption , Algorithms , Buffers , Electrolytes , Humans , Models, Molecular , Refractometry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL